
Rameswara Reddy.K.V

Asst.Professor

CSE Department

What is Data Warehousing

 Data Warehousing is an architectural construct of

information systems that provides users with current and historical

decision support information that is hard to access or present in

traditional operational data stores

The need for data warehousing

•Business perspective
 –In order to survive and succeed in today’s highly competitive

 global environment

•Decisions need to be made quickly and correctly

•The amount of data doubles every 18 months, which affects response

 time and the sheer ability to comprehend its content

•Rapid changes

Business Problem Definition

 Providing the organizations with a sustainable competitive

Advantage

 Customer retention

 Sales and customer service

 Marketing

 Risk assessment and fraud detection

Business problem and data warehousing

Classified into

Retrospective analysis:

 Focuses on the issues of past and present events.

Predictive analysis:

 Focuses on certain events or behavior based on historical
information

 Further classified into

 Classification:

 Used to classify database records into a number of predefined
classes based on certain criteria.

 Clustering:

 Used to segment a database into subsets or clusters based on a set
of attributes

Association

 It identify affinities among the collection as reflected in the
examined records.

Sequencing

 This techniques helps identify patterns over time, thus allowing ,
for example, an analysis of customers purchase during separate visits.

Operational and Informational Data Store

Operational Data

 Focusing on transactional function such as bank card withdrawals
and deposits

•Detailed

•Updateable

•Reflects current

 ODS Data warehouse

volatile nonvolatile

every current data current and historical data

detailed data precalculated summaries

Informational Data

 Informational data, is organized around subjects such as

customer, vendor, and product. What is the total sales today?.

 Focusing on providing answers to problems posed by decision

makers

•Summarized

•Nonupdateable

Operational data store.

 An operational data store (ODS) is an architectural concept to

support day-to-day operational decision support and constrains current

value data propagated from operational applications.

 A data warehouse is a subject-oriented, integrated, nonvolatile,

time-variant collection of data in support of management's decisions.

[WH Inmon]

Subject Oriented

 Data warehouses are designed to help to analyze the data. For

example, to learn more about your company’s sales data, building a
warehouse that concentrates on sales

Integrated

 The data in the data warehouse is loaded from different sources

that store the data in different formats and focus on different aspects of

the subject. The data has to be checked, cleansed and transformed into

a unified format to allow easy and fast access.

Nonvolatile

 Nonvolatile means that, once entered into the warehouse, data

should not change. After inserting data in the data warehouse it is

neither changed nor removed. Data warehouse requires two operations

in data accessing

 Initial loading of data

 Access of data

Time Variant

 In order to discover trends in business, analysts need large

amounts of data. A data warehouse’s focus on change over time is
what is meant by the term time variant.

 Provides information from historical perspective

Seven data warehouse components

 Data sourcing, cleanup, transformation, and migration tools

 Metadata repository

 Warehouse/database technology

 Data marts

 Data query, reporting, analysis, and mining tools

 Data warehouse administration and management

 Information delivery system

Data Warehouse Architecture

Data Warehousing Components

 Operational data and processing is completely separate form data

warehouse processing.

Data Warehouse Database

 It is an important concept (Marked as 2 in the diagram) in the

Warehouse environment.

 In additional to transaction operation such as ad hoc query

processing, and the need for flexible user view creation including

aggregation, multiple joins, and drill-down.

 Parallel relational database designs that require a parallel computing

platform.

 Using new index structures to speed up a traditional RDBMS.

 Multidimensional database (MDDBS) that are based on proprietary

database technology or implemented using already familiar RDBMS.

Sourcing, Acquisition, Cleaning, and Transformation tools

 To perform all of the conversations, summarizations, key
changes, structural changes, and condensations needed to transform
disparate data into information

 Removing unwanted data from operational database

 Converting to common data names and definitions

 Calculating summarizes and derived data.

 Establishing default for missing data.

 Accommodating source data definition changes.

 Database heterogeneity. DBMS are very different in data model,
data access language, data navigation, operation, concurrency,
integrity, recovery etc,.

 Data heterogeneity. This is the difference in the way data is defined
and used in different models, different attributes for the same entity.

Metadata

data about data

Used for building, maintaining, and using the data warehouse

Classified into

Technical metadata

 About warehouse data for use by warehouse designers and

administrators when carrying out warehouse development and

management tasks

 Information about data sources

 Transformation, descriptions, i.e., the mapping methods from

operational databases into the warehouse and algorithms used to

convert, enhance or transform data.

 Warehouse objects and data structure definitions for data targets.

 The rules used to perform data cleanup and data enhancement.

 Data mapping operations when capturing data from source systems

and applying to the target warehouse database.

 Access authorization, backup history, archive history, information

delivery history, data acquition history, data access etc.,

Business metadata

Gives perspective of the information stored in the data warehouse

 Subject areas and information object type, including queries, reports,

images, video, and / or audio clips.

 Internet home pages.

 Other information to support all data warehouse components.

 Data warehouse operational information e.g., data history, ownership,

extract, audit trail, usage data.

 Metadata management is provided via a metadata repository and
accompanying software.

 The important functional components of the metadata repository
is the information directory. This directory helps integrate, maintain,
and view the contents of the data warehousing system

Access Tools

 Front-end tools, ad hoc request, regular reports, and custom
applications are the primary delivery of the analysis.

 Alerts, which let a user know when a certain event has occurred

 The tools divided into five main groups.

 Data query and reporting tools

 Application development tools

 Executive information system (EIS) tools

 On-line analytical processing tools

 Data mining tools

Query and reporting tools

This category can be further divided into two groups.

 Reporting tools

 Managed query tools

 Reporting tools can be divided into production reporting tools
and desktop report writers.

 Production reporting tools will let companies generate regular
operational reports or support high-volume batch jobs.

 Report writers, on the other hand, are inexpensive desktop tools
designed for end users.

 Managed query tools shield end users from the complexities of
SAL and database structures by inserting a metalayer between users
and the database

Applications

Applications developed using a language for the users

OLAP

Based on the concepts of multidimensional database

Data mining

 To discovery meaningful new correlations, patterns, and trends
by digging into (mining) large amount of data stored in warehouse
using artificial-intelligence (AI) and statistical and mathematical
techniques

Discover knowledge. The goal of knowledge discovery is to determine
the following things.

 Segmentation

 Classification

 Association

 Preferencing

Visualize data. Prior to any analysis, the goal is to “humanize” the mass
of data they must deal with and find a clever way to display the data.

Correct data. While consolidating massive database may enterprise find
that the data is not complete and invariably contains erroneous and
contradictory information. Data mining techniques can help identify
and correct problems in the most consistent way possible.

Data visualization

Presenting the output of all the previously mentioned tools

Colors, shapes, 3-D images, sound, and virtual reality

Data Marts

 Data store that is subsidiary to data warehouse

 It is partition of data that is created for the use of dedicated group
of users

 Placed on the data warehouse database rather than placing it as
separate store of data.

 In most instance, the data mart is physically separate store of data

and is normally resident on separate database server.

1. Extremely urgent user requirements.

2. The absence of a budget for a full dwh strategy.

3. The absence of a sponsor for an enterprise wide decision support

strategy.

4. The decentralization of business units.

5. The attraction of easy to use tools and a mind sized project.

Data Warehouse administration and Management

 Managing data warehouse includes

 Security and priority management

 Monitoring updates form multiple sources

 Data quality checks

 Managing and updating metadata

 Auditing and reporting data warehouse usage and status

 Replicating, sub setting, and distributing data

 Backup and recover

 Data warehouse storage management

Information delivery system

 The information delivery system distributes warehouse stored

data and other information objects to other data warehouse and end-

user products such as spread sheets and local databases.

 Delivery of information may be based on time of day, or a

completion of an external event.

Business considerations

Return on Investment

Approach

 The information scope of the data warehouse varies with the

business requirements, business priorities, and magnitude of the

problem

 Two data warehouses

 Marketing

 Personnel

 The top-down approach

 Building an enterprise data warehouse with subset data marts.

 The bottom-up approach

 Resulted in developing individual data marts, which are then

integrated into the enterprise data warehouse.

Building a Data Warehouse

Organizational issues

 A data warehouse implementation is not truly a technological

issue; rather, it should be more concerned with identifying and

establishing information requirements, the data sources fulfill these

requirements, and timeliness.

Design considerations

 A data Warehouse’s design point is to consolidate from multiple,
often heterogeneous sources into a query database. The main factors

include

 Heterogeneity of data sources, which affects data conversion, quality,

timeliness

 Use of historical data, which implies that data may be “old”.
 Tendency of databases to grow very large

Data content

 A data warehouse may contain details data, but the data is
cleaned up and transformed to fit the warehouse model, and certain
transactional attributes of the data are filtered out.

 The content and structure of the data warehouse are reflected in
its data model. The data model is the template that describes how
information will be organized within the integrated warehouse
framework.

Metadata

 A data warehouse design should ensure that there is mechanism
that populates and maintains the metadata repository, and that all
access paths to the data warehouse have metadata as an entry point.

Data distribution

 One of the challenges when designing a data warehouse is to
know how the data should be divided across multiple servers and
which users should get access to which types of data.

 The data placement and distribution design should

consider several options, including data distribution by

subject area, location, or time.

Tools

 Each tool takes a slightly different approach to data warehousing

and often maintain its own version of the metadata which is placed

in a tool-specific, proprietary metadata repository.

 The designers of the tool have to make sure that all selected tools

are compatible with the given data warehouse environment and with

each other.

Performance considerations

 Rapid query processing is highly desired feature that should be
designed into the data warehouse.

 Design warehouse database to avoid the majority of the most
expensive operations such as multitable search and joins

Nine decisions in the design of data warehouse

1. Choosing the subject matter.

2. Deciding what a fact table represents.

3. Identifying and confirming the dimensions.

4. Choosing the facts.

5. Storing precalculations in the fact table.

6. Rounding out the dimension tables.

7. Choosing the duration of the database.

8. The need to track slowly changing dimensions.

9. Deciding the query priorities and the query modes

Technical Considerations

 The hardware platform that would house the data warehouse

 The database management system that supports the warehouse

database.

 The communications infrastructure that connects the warehouse,

data marts, operational systems, and end users.

 The hardware platform and software to support the metadata

repository.

 The systems management framework that enables centralized

management and administration. of the entire environment

Hardware platforms

 Data warehouse server is its capacity for handling the volumes of

data required by decision support applications, some of which may

require a significant amount of historical data.

 This capacity requirement can be quite large

 The data warehouse residing on the mainframe is best suited for

situations in which large amounts of data

 The data warehouse server has to be able to support large data

Volumes and complex query processing.

Balanced approach.

 An important design point when selecting a scalable computing

platform is the right balance between all computing components

Data warehouse and DBMS specialization

 The requirements for the data warehouse DBMS are

performance, throughput, and scalability because the database large

in size and the need to process complex ad hoc queries in a

relatively in short time.

 The database that have been optimized specifically for data

warehousing.

Communications infrastructure

 Communications networks have to be expanded, and new
hardware and software may have to be purchased to meet out the
cost and efforts associated with bringing access to corporate data
directly to the desktop.

Implementation Considerations

 Data warehouse implementation requires the integration of many
products within a data warehouse.

 The steps needed to build a data warehouse are as follows.

 Collect and analyze business requirements.

 Create a data model and a physical design for the data warehouse.

 Define data warehouse.

 Choose the database technology and platform for the warehouse.

 Extract the data from the operational databases, transform it, clean it
up, and load it into the database.

 Choose the database access and reporting tools.

 Choose database connectivity software.

 Choose data analysis and presentation software.

 Update the data warehouse.

Access tools

 Suit of tools are needed to handle all possible data warehouse

access needs and the selection of tools based on definition of deferent

types of access to the data

 Simple tabular form reporting.

 Ranking.

 Multivariable analysis.

 Time series analysis.

 Data visualization, graphing, charting and pivoting.

 Complex textual search.

 Statistical analysis.

 Artificial intelligence techniques for testing of hypothesis, trend

discovery, definition and validation of data cluster and segments.

 Information mapping

 Ad hoc user-specified queries

 Predefined repeatable queries

 Interactive drill-down reporting and analysis.

 Complex queries with multitable joins, multilevel sub queries, and

sophisticated search criteria.

Data extraction, cleanup, transformation and migration

 Data extraction decides the ability to transform, consolidate,

integrate, and repair the data should be considered

 The ability to identify data in the data source environments that can be
read by the conversion tool is important

 Support for flat files, indexed files

 The capability to merge data from multiple data stores is required in
many installations.

 The specification interface to indicate the data to be extracted and
conversion criteria is important.

 The ability to read information from data dictionaries or import
information from repository products is desired.

 The code generated by the tool should be completely maintainable
from within the development environment.

 Selective data extraction of both data elements and records enables
users to extract only the required data.

 A field-level data examination for the transformation of data into
information is needed.

 The ability to perform data-type and character-set translation is a
requirement when moving data between incompatible systems.

 The capability to create summarization, aggregation, and derivation
records and fields in very important

 The data warehouse database management should be able to
perform the load directly form the tool, using the native API
available with the RDBMS.

 Vendor stability and support for the product are items that must be
carefully evaluated.

Data placement strategies

 As a data warehouse grows, there at least two options for data
placement. One is to put some of the data in the data warehouse into
another storage media e.g., WORM, RAID, or photo-optical
technology.

 The second option is to distribute the data in the data warehouse

across multiple servers

Data replication

 Data that is relevant to a particular workgroup in a localized

database can be a more affordable solution than data warehousing

 Replication technology creates copies of databases on a periodic

bases, so that data entry and data analysis can be performed

separately

Metadata

 Metadata is the roadmap to the information stored in the

warehouse

 The metadata has to be available to all warehouse users in order

to guide them as they use the warehouse.

User sophistication levels

Casual users

Power users.

Experts

Integrated Solutions

 A number of vendors participated in data warehousing by

providing a suit of services and products that go beyond one particular

Component of the data warehouse.
Digital Equipment Corp. Digital has combined the data modeling, extraction and cleansing capabilities of

Prism Warehouse Manager with the copy management and data replication capabilities of Digital’s
ACCESSWORKS family of database access servers in providing users with the ability to build and

use information warehouse

Hewlett-Packard. Hewlett-Packard’s client/server based HP open warehouse comprises multiple
components, including a data management architecture, the HP-UX operating system HP

9000 computers, warehouse management tools, and the HP information Access query

 tool

 IBM. The IBM information warehouse framework consists of an architecture; data management tools;

OS/2, AIX, and MVS operating systems; hardware platforms, including mainframes and servers; and a

relational DBMS (DB2).

 Sequent. Sequent computer systems Inc.’s DecisionPoint Program is a decision support program for
the delivery of data warehouses dedicated to on-line complex query processing (OLCP). Using

graphical interfaces users query the data warehouse by pointing and clicking on the warehouse data

item they want to analyze. Query results are placed on the program’s clipboard for pasting onto a
variety of desktop applications, or they can be saved on to a disk.

Benefits of Data Warehousing

Data warehouse usage includes

 Locating the right information

 Presentation of Information (reports, graphs).

 Testing of hypothesis

 Sharing and the analysis

Tangible benefits

 Product inventory turnover is improved

 Cost of product introduction are decreased with improved selection of

target markets.

 More cost-effective decision making is enabled by increased quality

and flexibility of market analysis available through multilevel data

structures, which may range from detailed to highly summarized.

 Enhanced asset and liability management means that a data warehouse

can provide a “big” picture of enterprise wide purchasing and
inventory patterns.

Intangible benefits

The intangible benefits include.

 Improved productivity, by keeping all required data in a single

location and eliminating the redundant processing

 Reduced redundant processing.

 Enhance customer relations through improved knowledge of

individual requirement and trends.

 Enabling business process reengineering.

Mapping the Warehouse to a Multiprocessor Architecture

Relational Database Technology for Data Warehouse

The Data warehouse environment needs

 Speed up

 Scale-p

 Parallel hardware architectures, parallel operating systems and

parallel database management systems will provide the requirement of

warehouse environment.

Types of parallelism

Interquery parallelism

 Threads (or process) handle multiple requests at the same time.

Intraquery parallelism

 scan, join, sort, and aggregation operations are executed concurrently

in parallel.

Intraquery parallelism can be done in either of two ways

Horizontal parallelism

 Database is partitioned across multiple disks, and parallel

processing occurs within a specific task that is performed concurrently

on different sets of data.

Vertical parallelism

 An output from on tasks (e.g., scan) becomes are input into

another task (e.g., join) as soon as records become available.

Data Partitioning

 Spreads data from database tables across multiple disks so that

I/O operations such as read and write can be performed in parallel.

Random partitioning

 It includes data striping across multiple disks on a single server.

Another options for random partitioning is round-robin partitioning. In which each

new record is placed on the next assigned to the database.

Case 1

Response

Time

Case 2

Serial

RDBM

S

Horizontal

Parallelism

(Data Partitioning)

Case 3

Vertical Parallelism

(Query

Decomposition)

Case 4

Intelligent partitioning

 DBMS knows where a specific record is located and does not

waste time searching for it across all disks.

Hash partitioning. A hash algorithm is used to calculate the partition

umber (hash value) based on the value of the portioning key for each

row.

 Key range partitioning. Rows are placed and located in the partitions

according to the value of the partitioning key (all rows with the key

value form A to K are in partition 1, L to T are in partition 2 etc.).

 Schema partitioning. an entire table is placed on one disk, another

table is placed on a different disk, etc. This is useful for small

reference tables that are more effectively used when replicated in each

partition rather than spread across partitions.

 User-defined partitioning. This is a partitioning method that allows a

table to be partitioned on the basis of a user-defined expression.

Database Architecture for Parallel Processing

Shared-memory architecture- SMP (Symmetric Multiprocessors)

 Multiple database components executing SQL statements

communicate with each other by exchanging messages and data via the

shared memory.

 Scalability can be achieved through process-based multitasking

or thread-based multitasking.

Interconnection Network

Processor

Unit

(PU)

Global Shared Memory

Processor

Unit

(PU)

Processor

Unit

(PU)

Shared-disk architecture

 The entire database shared between RDBMS servers, each of

which is running on a node of a distributed memory system.

 Each RDBMS server can read, write, update, and delete records

from the same shared database

 Implemented by using distribute lock manager (DLM)

Disadvantage.

 All nodes are reading and updating the same data, the RDBMS

and its DLM will have to spend a lot of resources synchronizing

 multiple buffer pools.

 It may have to handle significant message traffic in a highly

utilized REBMS environment.

Advantages.

 It reduce performance bottlenecks resulting from data skew (an

uneven distribution of data), and can significantly increases system

availability.

 It eliminates the memory access bottleneck typical of large SMP

systems, and helps reduce DBMS dependency on data partitioning.

Interconnection Network

Processor

Unit

(PU)

Global Shared Disk Subsystem

Processor

Unit

(PU)

Processor

Unit

(PU)

Local

Memory

Local

Memory

Local

Memory

 Figure 4.3 Distributed-memory shared-disk architecture

Shared-nothing architecture

 Each processor has its own memory and disk, and communicates

with other processors by exchanging messages and data over the

interconnection network.

Interconnection Network

Processor

Unit

(PU)

Processor

Unit

(PU)

Processor

Unit

(PU)

Local

Memory

Local

Memory

Local

Memory

Disadvantages.

It is most difficult to implement.

It requires a new programming paradigm

Combined architecture

 Combined hardware architecture could be a cluster of SMP nodes

 combined parallel DBMS architecture should support intersever

parallelism of distributed memory MPPs and intraserver parallelism of

SMP nodes.

Parallel RDBMS features

Scope and techniques of parallel DBMS operations

Optimizer implementation

Application transparency

The parallel environment

DBMS management tool

Alternative Technologies

 Number of vendors are working on other solutions improving

performance in data warehousing environments.

 Advanced database indexing products

 Specialized RDBMSs designed specifically for data warehousing.

 Multidimensional databases

 SYBASE IO is an example of a product that uses a bitmapped

index structure of the data stored in the SYBASE DBMS.

Parallel DBMS Vendors

Oracle

 Oracle supports parallel database processing with its add-on

oracle parallel server option(OPS) and parallel query option(PQO)

Architecture.

Virtual shared-disc capability.

Process-based approach

Facilitate the inter query parallelism

PQO supports parallel operations such as index build, database load,

backup, and recovery.

Data partitioning

 It supports random striping of data across multiple disks.

Oracle supports dynamic data repartitioning

Parallel operations

 Generates a parallel plan

 The oracle PQO query coordinator breaks the query into sub queries

 Parallelize the creation of indexes, database load, backup, and

recovery

 PQO supports both horizontal and vertical parallelism

Informix

Architecture.

 Support shared-memory, shared-disk, and shared-nothing models.

 It is thread based architecture.

Data partitioning.

 Round-robin, schema, charts, key range, and user-defined

partitioning methods . Both data and index can be partitioned

Parallel Operations.

 Executes queries in parallel.

IBM

 Client/Server database product-DB2 parallel Edition

Architecture.

 DB2 PE is a shared-nothing architecture in which all data is

partitioned across processor nodes.

 Each node is aware of the other nodes and how the data is

partitioned

Data partitioning.

 Allow a table to span multiple nodes.

 The master system catalog for each database is stored on one

node and cached on every other node.

Parallel operations.

All database operations are fully parallelized

Sybase

 Sybase has implemented its parallel DBMS functionality in a

parallel product called DYBASE MPP.

Architecture.

 It is a shared-nothing systems that partitions data across multiple

SQL servers and supports both function shipping and data repartitions.

 Open server application that operates on top of existing SQL

servers.

 All the knowledge about the environment, data partitions, and

parallel query execution is maintained by SYBASE MPP software.

SYBASE MPP consists of specialized servers.

 Data server the smaller executable unit of parallelism that consists of

SQL server, split server (performs joins across nodes), and control

server (coordination of execution and communication)

 DBA server handles optimization, DDL statements, security and global

systems catalog.

 Administrative server a graphical user interface for managing

SYBASE MPP.

Data partitioning.

supports hash, key range, and schema partitioning, indexes partitioning.

Parallel operations.

 All SQL statements and utilities in parallel across SQL servers

Microsoft

SQL server architecture is shared-everything design optimized for SMP

systems. SQL server is tightly integrated with the NT operating

systems threads

DBMS Schemas for Decision Support
Data Layout for best access

Multidimensional Data Model

Star Schema

Two groups: facts and dimension

Facts are the core data element being analyzed

 e.g.. items sold

dimensions are attributes about the facts

 e.g. date of purchase

 The star schema is designed to overcome this limitation in the

two-dimensional relational model.

DBA Viewpoint

 The fact table contains raw facts. The facts are typically additive

and are accessed via dimensions.

 The dimension tables contain a non-compound primary key and

are heavily indexed.

 Dimension tables appear in constraints and GROUP BY Clauses,

and are joined to the fact tables using foreign key references.

 Once the star schema database is defined and loaded, the queries

that answer simple and complex questions.

Potential Performance Problems with star schemas

 The star schema suffers the following performance problems.

Indexing

Multipart key presents some problems in the star schema model.

(day->week-> month-> quarter-> year)

 It requires multiple metadata definition(one for each component) to

design a single table.

 Since the fact table must carry all key components as part of its
primary key, addition or deletion of levels in the hierarchy will require
physical modification of the affected table, which is time-consuming
processed that limits flexibility.

 Carrying all the segments of the compound dimensional key in the fact
table increases the size of the index, thus impacting both performance
and scalability.

Level Indicator

 The dimension table design includes a level of hierarchy indicator
for every record.

 Every query that is retrieving detail records from a table that
stores details and aggregates must use this indicator as an additional
constraint to obtain a correct result.

 The user is not and aware of the level indicator, or its values are
in correct, the otherwise valid query may result in a totally invalid
answer.

 Alternative to using the level indicator is the snowflake schema

 Aggregate fact tables are created separately from detail tables

 Snowflake schema contains separate fact tables for each level of

aggregation

Other problems with the star schema design

Pairwise Join Problem

 5 tables require joining first two tables, the result of this join with

third table and so on.

 The intermediate result of every join operation is used to join

with the next table.

 Selecting the best order of pairwise joins rarely can be solve in a

reasonable amount of time.

 Five-table query has 5!=120 combinations

 This problem is so serious that some databases will not run a

query that tries to join too many tables.

STARjoin and STARindex

 A STARjoin is a high-speed, single-pass, parallelizable multitable
join and is introduced by Red Brick’s RDBMS.

 STARindexes to accelerate the join performance

 STARindexes are created in one or more foreign key columns of

a fact table.

 Traditional multicolumn references a single table where
as the STARindex can reference multiple tables

 With multicolumn indexes, if a query’s WHERE Clause
does not contain on all the columns in the composite index,
the index cannot be fully used unless the specified columns
are a leading subset.

 The STARjoin using STARindex could efficiently join the

dimension tables to the fact table without penalty of generating the full

Cartesian product.

 The STARjoin algorithm is able to generate a Cartesian product

in regions where these are rows of interest and bypass generating

Cartesian products over region where these are no rows.

 10 to 20 times faster than traditional pairwise join techniques

Bit mapped Indexing

SYBASE IQ

Overview.

 Data is loaded into SYBASE IQ, it converts all data into a series

of bitmaps; which are them highly compressed and stored in disk.

 SYBASE IQ indexes do not point to data stored elsewhere all

data is contained in the index structure.

Data Cardinality.

 Bitmap indexes are used to queries against low-cardinality data-
that is data in which the total number of potential values is relatively
low.

 For example, state code data cardinality is 50 and gender
cardinality is only 2(male and female).

 For low cardinality data, each distinct value has its own bitmap
index consisting of a bit for every row in the table.

 The bit map index representation is a 10000 bit long vector which
has its bits turned ON (value of 1) for every record that satisfies
“gender=”M” condition.

 Bitmap indexes can become cumbersome and even unsuitable for

high cardinality data where the range of potential value is high.

 SYBASE IQ high cardinality index starts at 1000 distinct values.

Emp-Id Gender Last Name First Name Address

104345 M Karthik Ramasamy 10, North street

104567 M Visu Pandian 12, Pallavan street

104788 F Mala Prathap 123, Koil street

1 1 0 0 0 1 1 0 0 1 0 1 1 1 0

Record 1

Record 2
Record N

Index Types.

 The SYBASE IQ provides five index techniques. One is a

default index called the Fast projection index and the other is either a

low-or high-cardinality index.

Performance.

 SYBASE IQ technology achieves very good performance in ad

hoc queries for several reasons.

 Bitwise Technology. This allows rapid response to queries containing

various data type, supports data aggregation and grouping.

 Compression. SYBASE IQ uses sophisticated algorithm to compress

data into bitmapping SYBASE IQ can hold more data in memory

minimizing expensive I/O operations.

Row

Row

Row

Row

Read

Read

Read

Read

E-Id

Gender

Name

1

1

0

1

1

1

1

0

0

1

0

1

E-Id Gender Name

Traditional Row-based processing SYBASE IQ Column-wise processing

 Optimized memory-based processing. SYBASE IQ caches data
columns in memory according to the nature of user’s queries.

 Columnwise processing. SYBASE IQ scans columns not rows. For
the low selectivity queries (those that select only a few attributes from
a multi attribute row) the technique of scanning by columns drastically
reduces the amount of data the engine has to search.

 Low Overhead. As an engine optimized for decision support,
SYBASE IQ does not carry an overhead associated with traditional
OLTP designed RDBMS performance.

 Large Block I/O. Block size high in SYBASE IQ can be tuned from
512 bytes to 64 bytes, so that the system can read as much information
as necessary in a single I/O.

 Operating-system-level parallelism. SYBASE IQ breaks low-level
operations like sorts, bitmap manipulation, load and I/O into non
blocking operation’s that the operating systems can schedule
independently and in parallel.

 Prejoin and ad hoc join Capabilities. SYBASE IQ allows users to
take advantage of know join relationships between tables by defining
them in advance and building indexes between tables.

 Shortcoming of Indexing.

 Some of the tradeoffs of the SYBASE IQ are as follows

 No Updates. SYBASE IQ does not support updates, and

therefore is unsuitable

 Lack of core RDBMS features. SYBASE IQ does not support

all the backup and recovery and also does not support stored

procedures, data integrity checker, data replication, complex

data types.

 Less advantage for planned queries. SYBASE IQ

advantages are most obvious when running ad hoc queries

 High memory Usage. SYBASE IQ takes advantage of

available system memory to avoid expensive I/O operations

Column Local Storage

 Performance in the data warehouse environment can be achieved

by storing data in memory in column wise instead to store one row at a

time and each row can be viewed and accessed as single record.

Emp-id Emp-Name Dept Salary

1004

1005

1006

Suresh

Mani

Sara

CSE

MECH

CIVIL

15000

25000

23000

1004 Suresh CSE 15000

1005 Mani MECH 25000

1006 Sara CIVIL 23000

1004 1005 1006

Suresh Mani Sara

CSE MECH CIVIL

15000 25000 23000

Complex Data types

 The warehouse environment support for datatypes of complex

like text, image, full-motion video, some and large objects called

binary large object (BLOBs) other than simple such as alphanumeric.

Data Extraction, cleanup, and Transformation Tools

Tools Requirements

 The tools that enable sourcing of the proper data contents

and formats from operational and external data stores into the data

warehouse to perform a number of important tasks that include

 Data transformation from one format to another on the basis of

possible differences between the source and the target platform.

 Data transformation and calculation based on the application of the

business rules that force certain transformations. Examples are

calculating age from the date of birth, or replacing a possible numeric

gender code with a more meaningful “male” and “female” and data
cleanup, repair, and enrichment, which may include corrections to the

address field based on the value of the postal zip code.

 Data conversations and integration, which may include combining

several source records into a single record to be loaded into the

warehouse.

 Metadata synchronization and management, which includes storing

and/or updating metadata definitions about source data files,

transformation actions, loading formats, and events etc.,

 When implementing a data warehouse, several selection criteria that

affect the tools ability to transform, consolidate, integrate, and repair

the data should be considered.

 The ability to identify data in the source environments that can be read

by the conversion tool is important.

 Support for flat files, indexed files

 The capability to merge data from multiple data stores

 The ability to read information from data dictionaries or important information

from repository products is desired

 The code generated by the tool should be completely maintainable from within

the development environment.

 Selective data extraction of both data elements and records enables uses to extract

only the required data.

 A field-level data examination for the transformation of data into information is

needed.

 The ability to perform data-type and character-set translation is a requirement

when moving data between incompatible systems.

 The capability to create summarization, aggregation, and derivation records and

fields is very important.

 The data warehouse database management system should be able to perform the

load directly from the tool, using the native API available with the RDBMS.

 Vendor stability and support for the product are items that must be carefully

evaluated.

Vendor Approaches

 The integrated solutions can fall into one of the categories

described below

 Code generators

 Database data replication tools

 Rule-driven dynamic transformation engines capture data from

source systems at user-defined intervals, transform the data, and then

send and load the results into a target environment, typically a data

mart

Access to Legacy Data

 Many organizations develop middleware solutions that can

manage the interaction between the new applications and growing data

warehouses on one hand and back-end legacy systems in the other

hand.

 A three architecture that defines how applications are partitioned

to meet both near-term integration and long-term migration objectives.

 The data layer provides data access and transaction services for

management of corporate data assets.

 The process layer provides services to manage automation and support

for current business process.

 The user layer manages user interaction with process and /or data layer

services.

Vendor Solutions

Prism Solutions

 Provides a comprehensive solution of data warehousing by

mapping source data to a target database management system to be

used as warehouse.

 Warehouse Manager generates code to extract and integrate data, create and

manage metadata, and build a subject-oriented, historical base.

 Prism Warehouse Manager can extract data from multiple source environments

including DB2, IDMS, IMS, VSAM, RMS and sequential files under UNIX or MVS.

Target databases include ORACLE SYBASE, and INFIRMIX

SAS Institute

 SAS tools to serve all data warehousing functions.

 Its data repository function can act to build the informational database.

 SAS Data Access Engine serve as extraction tools to combine common

variables, transform data representation forms for consistency, consolidate redundant

data, and use business rules to produce computed values in the warehouse.

 SAS engines can work with hierarchical and relational databases and

sequential files

Carleton Corporation’s PASSPORT and MetaCenter.
PASSPORT.

 PASSPORT is sophisticated metadata-driven, data-mapping and data-

migration facility.

 PASSPORT Workbench runs as a client on various PC platforms in the three-

tiered environment, including OS/2 and Windows.

 The product consists of two components.

 The first, which is mainframe-based, collects the file, record, or table layouts

for the required inputs and outputs and converts them to the Passport Data Language

(PDL).

Overall, PASSPORT offers

 A metadata dictionary at the core of the process.

 Robust data conversion, migration, analysis, and auditing facilities.

 The PASSPORT Workbench that enables project development on a workstations,

with uploading of the generated application to the source data platform.

 Native interfaces to existing data files and RDBMS, helping users to lever-age

existing legacy applications and data.

 A comprehensive fourth-generation specification language and the full power of

COBOL.

The MetaCenter.

 The MetaCenter, developed by Carleton Corporation in partnership with

Intellidex System, Inc., is and integrated tool suite that is designed to put users in

control of the data warehouse.

It is used to manage

 Data extraction

 Data transformation

 Metadata capture

 Metadata browsing

 Data mart subscription

 Warehouse control center functionality

 Event control and notification

Vality Corporation

 Vality Corporation’s Integrity data reengineering tool is used to investigate,
standardize, transform, and integrate data from multiple operational systems and

external sources.

 Data audits

 Data warehouse and decision support systems

 Customer information files and house holding applications

 Client/server business applications such as SAP, Oracle, and Hogan

 System consolidations

 Rewrites of existing operational systems

Transformation Engines

Informatica

 Informatica’s product, the PowerMart suite, captures technical and business
metadata on the back-end that can be integrated with the metadata in front-end

partner’s products. PowerMart creates and maintains the metadata repository
automatically.

It consists of the following components

 PowerMart Designer is made up of three integrated modules- Source

Analyzer, Warehouse Designer, and Transformation Designer

 PowerMart Server runs on a UNIX or Windows NT platform.

 The Information Server Manager is responsible for configuring, scheduling,

and monitoring the Information Server.

 The Information Repository is the metadata integration hub of the Informatica

PowerMart Suite.

 Informatica PowerCapture allows a data mart to be incrementally refreshed

with changes occurring in the operational syste, either as they occur or on a

scheduled basis.

Constellar

 The Constellar Hub is designed to handle the movement and transformation of

data for both data migration and data distribution in an operational system, and for

capturing operational data for loading a data warehouse.

 Constellar employs a hub and spoke architecture to manage the flow of data

between source and target systems.

 Hubs that perform data transformation based on rules defined and developed

using Migration Manager

 Each of the spokes represents a data path between a transformation hub and a

data source or target.

 A hub and its associated sources and targets can be installed on the same

machine, or may run on separate networked computers.

Metadata

The metadata contains

 The location and description of warehouse system and data components

 Names, definition, structure, and content of the warehouse and end-user views.

 Identification of authoritative data sources.

 Integration and transformation rules used to populate the data warehouse; these

include the mapping method from operational databases into the warehouse, and

algorithms used to convert, enhance, or transform data

 Integration and transforms rules used to deliver data to end-user analytical tools.

 Subscription information, which includes a history of warehouse updates,

refreshments, snapshots, versions, ownership authorizations, and extract audit trail

 Security authorizations, access control lists, etc.

 Metadata is used for building, maintaining, managing, and using he data warehouse.

Metadata Interchange Initiative

 A Metadata standard developed for metadata interchange format and its
support mechanism.

 The goal of the standard include

 Creating a vendor-independent, industry-defined and application programming
interface (API) for metadata.

 Enabling users to control and mange the access and manipulation of metadata in their
unique environments through the use of interchange-standard compliant tools

 Allowing users to build tool configurations that meet their needs and to incrementally
adjust those configurations as necessary to add or subtract tools without impact on
the interchange standards environment.

 Enabling individual tools to satisfy their specific metadata access requirements freely
and easily within the context of an interchange model

 Defining a clean, simple interchange implementation infrastructure that will facilitate
compliance and speed up adoption by minimizing the amount of modification
required to existing tools to achieve and maintain interchange standards compliance.

 Creating a process and procedures not only for establishing and maintaining the
interchange standards specification but also for extending and updating it over time
as required by evolving industry and user needs.

Metadata Interchange Standard framework.

 Implementation of the interchange standard metadata model must assume that the

metadata itself may be stored in any type of storage facility or format; relational tables, ASCII

files, fixed-format or customized-format repositories, and so on.

The components of the Metadata Interchange Standard Framework are

 The Standard Metadata Model, which refers to the ASCII file format used to

represent the metadata that is being exchanged.

 The Standard Access Framework, which describes the minimum number of API

functions a vendor must support.

 Tool Profile, which is provided by each tool vendor. The Tool Profile is a file that

describes what aspects of the interchange standard metamodel a particular tool

supports.

 The User Configuration, which is a file describing the legal interchange paths for

metadata in the user’s environment. This file allows customers to constrain the flow
of metadata from tool to tool in their specific environments.

 This framework defines the means by which various tool vendors will enable

metadata interchange.

User Configuration

Standard Access Framework

Standard API

Standard

Metadata

Model

TOOL 1

Tool

Profile

TOOL 2

Tool

Profile

TOOL 3

Tool

Profile

TOOL 4

Tool

Profile

Metadata Repository

 The metadata itself is housed in and managed by the metadata repository.

 Metadata repository management software can be used to map the source data

to the target database, generate code for data transformations, integrate and transform

the data, and control moving data to the warehouse.

 Metadata defines the contents and location of data in the warehouse,

relationships between the operational databases and the data warehouse, and the

business views of the warehouse data that are accessible by the end-user tools.

 A data warehouse design should ensure that there is a mechanism that

populates and maintains the metadata repository, and that all access paths to the data

warehouse have metadata as an entry point.

Metadata Management

 Metadata define all data elements and their attributes, data sources and timing,

and the rules that govern data use and data transformations.

 The metadata also has to be available to all warehouse users in order to guide

them as they use the warehouse.

 Awell-thought-through strategy for collecting, maintaining, and distributing

metadata is needed for a successful data warehouse implementation.

Metadata Trends

 The process of integrating external and internal data into the

warehouse faces a number of challenges

 Inconsistent data formats

 Missing or invalid data

 Different level of aggregation

 Semantic inconsistency (e.g., different codes may mean different things from

different suppliers of data)

 Unknown or questionable data quality and timeliness

Reporting and Query tools and Applications
Five categories of tools

•Reporting
•Managed Query
•Executive information systems
•On-line analytical processing
•Data mining
 Reporting tools
 Production reporting tools

 Generate regular operational reports
 Include third-generation languages such as COBOL, specialized fourth-
generation languages such as Information builders.
 Report writers

 For end users
 E.g.. Segate Crystal report
 Having graphical interfaces.
 Pull groups of data from a variety of data sources and integrate them in a
single report.

 Managed query tools

 Shield the end users from the complexities of SQL and database by inserting a
metalayer between users and the databases.

 Supports point-and-click creation of SQL.

 Three tiered architecture to improve scalability.

 Executive information system tools

 EIS tools used to build customized, graphical decision support application .

 E.g. Pilot Software, Inc’s Lightship, Platinum Technology’s Forest and Trees.
 Building packaged applications that address functions, such as sales,

budgeting, and marketing.

 OLAP tools

 An intuitive way to view corporate data.

 Aggregate data along common business subjects or dimension and allow to
navigate through the hierarchies and dimensions with the click of a mouse
button.

 Drill down, across, or up levels in each dimension or pivot and swap out
dimensions to change their view of the data.

 E.g. Cognos’ PowerPlay, Brio Technology, Inc’s BrioQuery.
 Data mining tools

 Statistical and AI algorithms to analyze the correlation of variables in the data
and interesting patterns and relationships to investigate.

 E.g. IBM’s Intelligent Miner, DataMind Corp’s DataMind.
 The Need for Applications

 The complexity of the questions grows, the tools may become inefficient.

 The various access types to the data stored in a data warehouse

 Simple tabular form reporting

 Ad hoc user-specified queries

 Predefined repeatable queries

 Complex queries with multitable joins, multilevel subqueries

 Ranking

 Multivariable analysis

 Time series analysis

 Data visualization, graphing, charting, and pivoting

 Complex textual search

 Statistical analysis

 AI techniques for testing of hypothesis, trends discovery

 Information mapping

 Interactive drill-down reporting and analysis

 Three distinct type of reporting

 1. Creation and viewing of standard reports – Routine delivery of report

 2. Definition and creation of ad hoc reports – managers and business
users to quickly create their own reports and get quick answers

 3. Data exploration – Users can easily “surf” through data without a
preset path.

 The above said reasons may require applications often take the
form of custom-developed screens and reports that retrieve frequently used data
and format it in a predefined standardized way.

 Cognos Impromptu

 Overview

 Product from Cognos Corporation.

 An enterprise solution for interactive database reporting.

 Object oriented architecture, control and administrative
consistency across all users and reports

 Graphical user interface

 Ease of deployment

 Low cost

 Support both single user and multiusers

 The Impromptu Information Catalog.

 A LAN based repository of business knowledge and data access
rules.

 Protects the database from repeated queries and unnecessary
processing. Presents the database in a way that reflects how the business is
organized,

 And uses the terminology of the business.

 Enables business-relevant reporting through business rules

 Object-oriented architecture

 Inheritance-based administration and distributed catalogs.

 Changes to business rules, permission sets, and query activities
cascade automatically throughout the enterprise.

 Management functionality through the use of governers

 Governor can control

 Query activity

 Processing location

 Database connections

 Reporting permissions

 User profiles

 Client/server balancing

 Database transactions

 Security by value

 Field and table security

 Reporting

 Easy build and run their own reports

 Contains predefined templates for mailing, labels, invoices, sales
reports, and custom automation.

 Provides special reporting options

 Picklists and prompts

 creating report for which users can select from lists of values
called picklist.

 Reports containing too many values for a single variable,
Impromptu offers prompt.

 It allows to supply value at run time

 Custom templates

 Users can apply their data to the placeholders contained in the
template

 Templates standard logic, calculations, and layout complete the
report automatically in the user’s choice of format

 Exception reporting

 Ability to report high light values that lie outside accepted
ranges.

 Three types of exception report

 Conditional filters. Only those values that are outside defined
threshold, or define ranges to organize data for quick evaluation. E.g. Sales
under Rs.10000.

 Conditional highlighting. Formatting data on the basis of data values.
 E.g. Sales over Rs. 10000 always appear blue.
 Conditional display. Display report object under certain conditions.
 E.g. Sales graph only if the sales are below a predefined value.
 Interactive reporting

 Unifying query and reporting in a single interface.
 Frames.
 Frames are building blocks that may be used to produce reports.
 Frames formatted with fonts, border, colors, shading, etc.,
 Frames combined to create complex reports
 Templates can be created with multiframes.
 List frames
 Form frames
 Cross-tab frames
 Chart frames
 Text frames
 Picture frames
 OLE frames
 Impromptu’s design is tightly integrated with the Microsoft Windows

environment.

 Impromptu Request Server.

 sending query process to the server.

 Request server will execute the request, generating the result on
the server.

 After the producing the result it notifies the client, so that client
to do other things.

 supports data maintained in ORACLE 7.x and SYBASE

 Supported database

 Support ORACLE, SQL server, SYBASE SQL server, MDI
DB2 Gateway, Informix, dBase, Paradox.

 Applications

 Organizations build applications for several reasons

 A legacy DSS is still being used, and the reporting facilities appear adequate

 An organization has made a large investment in a particular application

 A new tool may require an additional investment, software, and the
infrastructure

 A particular reporting requirement may be too complicated for an available
reporting tools to handle

 PowerBuilder

 Object-oriented applications, including encapsulation, polymorphism,
inheritance and GUI objects.

 Once object created and tested and it can be reused by other applications

 Ability to interface with a wide variety of DBMS.

 Object orientation

 Supports many object-oriented features

 Inheritance

 Data abstraction

 Encapsulation

 Polymorphism

Windows facilities

 PowerBuilder supports Windows facilities

 DDE

 OLE

 MDI

 Features

 PowerBuilder windows and controls can contain program scripts
that execute in response to different events that can be detected by PowerBuilder

 PowerBuilder controls are buttons, radio buttons, bush buttons, list
box, check boxes, combo boxes, text fields menus, edit fields, and pictures

 Supports events such as clicked, double clicked

 Client/server application can be constructed using PowerBuilder
painters

 Application Painter.

 First identifies basic details and components of new or existing
applications

 Application icon displays a hierarchical view of the application
structure

 All levels can be expanded or contracted with a click of the right
mouse button.

 Creating and naming new applications, selection of an application
icon, setting of the library search path, and defining of default text characteristics.

 Supports all events

 It also used to run or debug the application

 Window Painter

 Used to create and maintain PowerBuilder window objects.

 Supports creation main application window, pop-up, dialog, and
MDI.

 Operations are performed by drag and drop and click operations.

 PowerScript Painter – allows to select from a list of events and
global and local variables.

 Object browser – displays attributes of any object, data type and
structures.

 DataWindows Painter

 Dynamic objects that provide access to databases and other data
sources such as ASCII files.

 Applications use this to connect to multiple databases and files, as
well as import and export data in a variety of formats such as dBase, Excel, Lotus.

 It also supports stored procedure.

 It allows developers to select a number of presentation styles from
the list of tabular, grid, label, and free form.

 It also allows a user-specified number of rows to be displayed.

 QueryPainter – used to generate of SQL statements that can be
stored in PowerBuilder libraries.

 Thus, using Application Painter, Window Painter, and
DataWindows Painter facilites, a simple client/server application can be
constructed literally in minutes.

 A rich set of SQL functions is supported, including
CONNECT/DISCONNECT, DECLARE, OPEN, and CLOSE cursor, FETCH,
and COMMIT/ROLLBACK.

 PowerBuilder supplies server other painter.

 Database Painter – used to pick table from the list box and examine and
edit join conditions and predicates, key fields, extended attribute, display
formats and other database attributes.

 Structure Painter – Creation and modification of data structures and
groups of related data elements

 Preference Painter – Configuration tool that is used to examine and
modify configuration parameters. For the PowerBuilder environment

 Menu Painter – Creates menus

 Function Painter – Assists developers in creating functions calls and
parameters using combo boxes.

 Library Painter - Manages the library in which the application
components reside.

 User object Painter – Allows Developers to create custom controls.

 Help Painter – Built-in help system

 Forté

 It is three tiered architecture – Client, Application business logic, and
Data server.

 Rapid development, testing, and deployment of distributed client/server
applications across any enterprise.

 Application partitioning.

 Forté allows to build logical application that is independent of
the underlying environment.

 Developers build an application as if it were to run entirely on a
single machine.

 Forté automatically splits apart the application to run across the
clients and servers that constitute the deployment environment.

 Support tunable application partitioning

 Shared-application services

 With Forté , developers build collection of application
components

 The components can include client functionality such as data
presentation and other desktop processing.

 Shared-application services form the basis for a three-tiered
application architecture

 Business events

 Automate the notification of significant business occurrences so
that appropriate actions can be taken immediately by users.

 Forté detects the event, and sends notification to all the
application components that have expressed interest in that event.

 It supports three functional components

 Application Development Facility (ADF)

 Distributed object computing framework

 To define user interfaces and application logic

 Includes GUI designer and Transactional object-oriented
language (TOOL)

 System Generation Facility (SGF)

 Assists developers in partitioning the application, generating
executables for distribution.

 Distributed Execution Facility (DEF)

 Tools for managing applications at runtime, including system
administration support, a distributed object manager to handle communications
between applications partitions, and a performance monitor.

 Web and Java integration

 Integration with Java

 ActiveX and ActiveX server support

 Forté servers can be called from OLE

 Support for the ability to call Forté Application servers from
C++ modules

 An option to generate and compile C++ code

 Portability and supported platforms

 Forté provides transparent portability across the most common
client/server platforms for both development and depolyment.

 Data General AViiON, Digital Alpha, Open VMS, UNIX, HP
9000, IBM RS/6000, Sun SPARC, and Window NT. Desktop GUI support
includes Macintosh, Motif, and Windows.

 Information Builder

 The products from Information builder

 Catcus and FOCUS

 Cactus

 Client/server environment

 create, test and deploy business applications spanning the
Internet

 Three-tired environment and application of any size and scope.

 It builds highly reusable components

 Object-based visual programming environment

 Access to ActiveX , VX, and OLE controls.

 Web-enabled access

 Application development for the Web with no prior
knowledge of HTML.

 The developer can focus on the business problem rather
than the underlying technology.

 Components and features

 Cactus Workbench – the front-end interface that provides access to the
tool suite via iconic toolbars, push buttons, and menus.

 Application Manager – in integrated application repository that manages
the application development

 Partition Manager

 Object browser

 Maintain – the proprietary language of cactus

 File painter – used to build the database access objects

 Application packager – used at deployment

 EDA/Client – “message layer” for tier-to-tier communications.

 Cactus Servers

 Cactus OCX

 Focus Fusion

 For multidimensional database technology for OLAP and data
warehousing.

 FOCUS Fusion provides

 Fast query and reporting

 Its advanced indexing, parallel queryn and rollup facilities

 Comprehensive, graphics-based administration facilities

 Database applications easy to build

 Integrated copy management facilities

 Automatic data refresh from any source into Fusion

 Open access via industry-standard protocols

 Through ANSI SQL, ODBC, and HTTP

On-Line Analytical Processing (OLAP)

 Need for OLAP

• Market analysis and financial forecasting requires a multidimensional schema
• Required to process large numbers of records from very large data sets.
• The multidimensional nature is the key driver for OLAP
• Relational database and SQL have some limitations
 E.g.. Full table scan, multiple join, aggregations and sorting and

computing this require the resources may not available all the time
• RDBMS weakness in analyzing Time Series and complex mathematical

functions
• RDBMS suffer response time and SQL funcitionality
• OLAP is a contiuous, iterative, and interactive process.

 E.g. Sales person performance affect monthly revenue numbers
 All these reasons make the need for OLAP

 Multidimensional Data Model

• Business problems are multidimensional nature

 E.g.

 How much revenue did the new product generate?

 How much revenue did the new product generate by month, in north
division, by sales office, relative to the previous version – a five dimensional
query

• Hence Multidimensional data model viewed as cube

• The cube can be converted into table by dimensions with other values like sales
numbers, unit price

• The response time of the multidimensional query depends on how many cells
have to be added on the fly

• The number of dimensions increases, the number of cells in the table increases
exponentially.

• The solution is to Build an efficient multidimensional database is to
preaggregate all logical subtotals and totals along all dimensions

 Dimensions are hierarchical in nature

 E.g. Time dimension – years, quarters, months, weeks, and days

 Region – country, state, city etc.

 drill-down – from annual sales to weekly sales and so on.

 properly handling sparse data

 not every cell has a meaning across all dimensions

 cells having duplicate data

 The multidimensional database to skip empty or repetitive cells can
greatly reduce the size of cube and the amount of processing

• Dimensional hierarchy, sparse data management, and preaggregation are keys,
they reduce the size of the database

P
ro

d
u

ct
s

Q1 Q2 Q3 Q4

2000 1000 2300 1400

Example of Star Schema

 time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
state_or_province
country

location

Sales Fact Table

 time_key

 item_key

 branch_key

 location_key

 units_sold

 dollars_sold

 avg_sales

Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch

Example of Snowflake Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city_key

location

Sales Fact Table

 time_key

 item_key

 branch_key

 location_key

 units_sold

 dollars_sold

 avg_sales

Measures

item_key
item_name
brand
type
supplier_key

item

branch_key
branch_name
branch_type

branch

supplier_key
supplier_type

supplier

city_key
city
state_or_province
country

city

A Concept Hierarchy: Dimension (location)

all

Europe North_America

Mexico Canada Spain Germany

Vancouver

M. Wind L. Chan

...

... ...

... ...

...

all

region

office

country

Toronto Frankfurt city

Multidimensional Data

 Sales volume as a function of product, month, and region

P
ro

d
uc

t

Month

Dimensions: Product, Location, Time

Hierarchical summarization paths

Industry Region Year

Category Country Quarter

Product City Month Week

 Office Day

A Sample Data Cube

Total annual sales

of TV in U.S.A.
Date

C
o
u

n
tr

y

sum

sum

TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

Cuboids Corresponding to the Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid

 Categorization of OLAP tools

 MLOP

• Specialized data structures used for organize, navigate, and analyze data in an
aggregated form

• Tight coupling with the application layer and presentation layer.

• Recently MLOP vendors provide APIs for OLAP operations.

• Data structures use array technology and, improved storage techniques to
minimize the disk space requirements through sparse data management.

• Excellent performance when the data is utilized as designed.

• Some products treat time as a special dimension for time series analysis and
other products provide strong analytical capabilities

• Applications requiring iterative and comprehensive time series analysis.

• Several challenges face users considering the implementation of applications
with MLOP products.

 Limitation in the ability of data structures to support multiple subject
areas of data and the detail data required by many analysis applications

 Limitation in the way data can be navigated and analyzed, because the
data is structured around the navigation and analysis requirements

known at the data structures built.
 MLOP products require a different set of skills and tools for the database

administrator of support

 With specialized multidimensional data storage and RDBMS
technology, providing user with a facility that tightly “couples” the data
multidimensional data structures (MDDs) with data maintained in and
RDBMS.

 The MDDSs to dynamically obtain detail data maintained in an
RDBMS.

 For example sales to be stored and maintained in a persistent
structure, will reduce the overhead of performing calculations and building
aggregation during application initilization.

Typical OLAP Operations

 Roll up (drill-up): summarize data

 by climbing up hierarchy or by dimension reduction

 Drill down (roll down): reverse of roll-up

 from higher level summary to lower level summary or detailed

data, or introducing new dimensions

 Slice and dice: project and select

 Pivot (rotate):

 reorient the cube, visualization, 3D to series of 2D planes

 Other operations

 drill across: involving (across) more than one fact table

 drill through: through the bottom level of the cube to its back-

end relational tables (using SQL)

Typical OLAP

Operations

Database Server

RDBMS

SQL

Result Set

Metadata

Request

Processing

MLOP Server

Result Set

Info

Request Front-end Tool
Load

 RLOP

• Support RDBMS products directly through a dictionary layer of metadata,
bypassing any requirement for creating a static multidimensional data structure.

• Multidimensional views of the two-dimensional relational table to be created
without the need to structure the data around the desired view.

• Creation of multiple SQL statements to handle user request

 It is undergoing some technological development

 Movement toward pure middleware technology that provides
facilities to simplify development of multidimensional applications

 Further blurring of the lines that delineate RLOAP and hybrid-
OLAP products.

Database Server

RDBMS

SQL

Result Set

Metadata

Request

Processing

RLOP Server

Result Set

Info

Request Front-end Tool

 Managed query environment (MQE)

• Ability to perform limited analysis capability, either directly against RDBMS
products, or by leveraging an intermediate MLOP server.

• Some products developed features to provide “datacube” and “slice and dice”
analysis capabilities.

• Query executed and the selected data from the DBMS, which then delivers the
requested data to the desktop, where it is placed into a datacube.

• The datacube can be stored and maintained locally in the desktop.

• Once the data is in the datacube, users can perform multidimensional analysis.

• The tools can work with MLOP servers, and the data from the relational
DBMS can be delivered to the MLOP server, and from there to the desktop.

• With metadata definitions that assist users in retrieving the correct set of data
that makes up the datacube.

• Each user to build a custom datacube, the lack of data consistency among
users, and the relatively small amount of data that can be efficiently maintained
are significant.

 Examples

 Cognos Software’s PowerPlay, Andyne Software’s
Pablo, Dimensional Insight’s CrossTarget, and Speedware’s Media.

Database Server

RDBMS

SQL

Result Set

MLOP Server

Result Set

Info

Request

Front-end Tool

Load

SQL Query

Result Set

OR

 State of the Market
• OLAP tools provide way to view the corporate data

• The tools aggregate data along common business subjects or dimensions and
then let the users navigate through the hierarchies and dimensions.

• Some tools preaggregate data in special multidimensional database.

• Some other tools work directly against relational data and aggregate data on the
fly.

• Some tools process OLAP data on the desktop instead of server.

• Leading database vendors incorporate OLAP functionality in their database
kernels.

 Cognos PowerPlay

 IBI FOCUS Fusion

 Pilot Software

 OLAP Tools and the Internet

 The Internet/WWW and data warehouse are tightly bound
together

 The Internet si a virtually free resource which provides a universal
connectivity within and between companies

 The Web eases complex administrative tasks of managing distributed
environments

 The Web allows companies to store and manage both data and
applications on server that can be centrally managed, maintained and
updated

 First-generation Web sites – The client can access the decision support report
through static HTML pages via web browsers.

 Second-generation Web sites – Interactive and CGI (HTML gateway)

 Third-generation Web sites – Java Applets, and Web based application servers

 Vendors approaches for deploying tools on the Web include

 HTML publishing

 Helper applications

 Plug-ins

 Server-centric components

 Java and ActiveX applications

Query

Engine:

Analytics
Drill Down

Agents

Web

Server HTML

Web Browser

CGI

Structured

Content

SQL

HTML

Unstructured

Content

 Tools from Internet/Web implementations

 Arbor Essbase Web

 It includes OLAP manipulations

 Drill up, down, and across

 pivot, slice and dice

 Fixed and dynamic reporting also data entry

 It doesn't have client package.

 Information Advantage WebOLAP

 Server-centric

 Powerful analytical engine that generates SQL to pull data from
relational database

 Provide client based package

 Data store and the analytical engine are separate

 MicroStrategy DSS Web

 DSS server

 relational OLAP server

 DSS Architect data modeling tool

 Dss Executive design tool for building executive information
system

 Brio technology

 Support OLAP applications on the Web

 Its own server brio.query.server

Data Mining

U

N

I

T

III

Introduction

• Extracting or “mining” knowledge from large amounts of data
• “Knowledge mining from data”.
• Knowledge mining, knowledge extraction, data/pattern analysis, data

archaeology

• Data mining is a step in the process of knowledge discovery.

 Knowledge discovery is a process consists of iterative sequence of steps.

1. Data cleaning - to remove noise and inconsistent data

2. Data integration – where multiple data sources may be combined

3. Data selection – where relevant to the analysis task are retrieved form the
database

4. Data transformation – where data are transformed or consolidated into forms
appropriate for mining by performing summary or aggregation operations.

5. Data mining – methods are applied to extract data patterns

6. Patter evaluation – to identify patterns representing knowledge based on
some interestingness measure

7. Knowledge presentation – techniques are used to present the mined
knowledge to the user

Data

Warehouse
Cleaning and

Integration

Selection and

Transformation

Data Mining

Evaluation and

Presentation

Flat files

Patterns

Knowledge

Databases

 Types of Data
 Data mining can be performed on any kind of data repository

including data streams. It includes the following data sources

 Database-oriented data sets and applications

 Relational database, data warehouse, transactional database

 Advanced data sets and advanced applications

 Data streams and sensor data

 Time-series data, temporal data, sequence data (incl. bio-sequences)

 Structure data, graphs, social networks and multi-linked data

 Object-relational databases

 Heterogeneous databases and legacy databases

 Spatial data and spatiotemporal data

 Multimedia database

 Text databases

 The World-Wide Web

Relational Databases

 Cust_ID Name Address Age Income Category

123

M.Kannan

123, south st,

34

--

34000

2

Data Warehouses

 A data warehouse is a repository of information collected from multiple
sources, stored under a unified schema, and that usually resides at a single site.
 Data warehouse are constructed via a process of data cleaning, data
integration, data transformation, data loading, and periodic data refreshing.

Data

Warehouse

Query and

Analysis Tools

Client

Client

Clean

Integrate

Transform

Load

Refresh Place 3

Place 2

Place 1

Place 4

Transactional Databases
 A transactional database consists of a file where each record represents a
transaction. A transaction typically includes a unique transaction identity number
(trans_ID) and a list of the items making up the transaction.

 Advanced Data and Information Systems and Advanced Applications

 Object-Relational Databases

• A set of variables that describe the object (also called attributes)
• A set of messages that the object can use to communicate with other objects
• A set of methods, where each method holds the code to implement a message.

 Temporal Databases, Sequence Databases, and Time-Series Databases

• Temporal database typically stores relational data that including time-related
attributes.

• Data mining techniques can be used to find the characteristics of object
 evolution or the trend of changes for objects in the database.

 Spatial Databases and Spatiotemporal Databases

• Spatial database contain spatial-related information
• Geographic database, very large-scale integration or computed-aided design

databases, and medical and satellite image databases.
• Geographic databases are commonly used in vehicle navigation and

dispatching systems.

 Text Databases and Multimedia Databases

• Text databases are databases that contain word descriptions for objects.

• These word descriptions are usually not simple keywords

• By mining text data, one may uncover general and concise descriptions of the
text documents, keyword or content associations

• Multimedia databases store image, audio, and video data.
• Content-based retrieval, voice-mail systems, video-on-demand systems, the

World Wide Web, and speech-based user interfaces that recognize spoken
commands

 Heterogeneous Databases and Legacy Databases
• A heterogeneous database consists of a set of interconnected, autonomous

component database

 Data Streams
• Data flow in and out of an observation platform (or window) dynamically
• Power supply, network traffic, stock exchange, telecommunication, Web click

streams video surveillance, and weather or environment monitoring

 The World Wide Web

• Capturing user access patterns in such distributed information environments is
called Web usage mining (or Weblog mining).

• Automated Web page clustering and classification help group and arrange Web
pages in a multidimensional manner based on their contents.

• Web community analysis helps identify hidden Web social networks and
communities and observer their evolution.

 Data Mining Functionalities

 Data mining tasks can be classified into two categories

 Descriptive mining – Characterize the general properties of the data in
the database.

 Predictive mining – Perform inference on the current data in order to
make prediction.

 Concepts/Class Description: Characterization and Discrimination
 Data can be associated with classes or concepts
 Data characterization is a summarization of the general characteristics or

features of target class of data.
 The data corresponding to the user-specified class are typically collected

by a database query.
 The output of data characterization can be pie charts, bar charts, curves,

multidimensional data cubes, and multidimensional table, including
corsstabs.

 Data characterization is a summarization of the general characteristics or
features of target class of data. The data corresponding to the user-specified
class are typically collected by a database query.

 There are several methods for effective data summarization and
characterization. Simple data summaries based on statistical measures.

 An attribute-oriented induction technique can be used to
perform data generalization and characterization without step-by-step user
interaction.

 The output of data characterization can be presented in various
formats. Examples include pie charts, bar charts, curves, multidimensional data
cubes, and multidimensional table, including corsstabs.

 Data discrimination is a comparison of the general features of target class data
objects with the general features of objects from one or a set of contrasting
classes.

 The target and contrasting classes can be specified by the user,
and the corresponding data objects retrieved through database queries.

 For example, the user may like to compare the general features
of software products whose sales increased by 10% in the last year with those
whose sales decreased by at least 30% during the same period.

 Mining Frequent Patterns, Associations, and Correlations

 Frequent patterns, are patterns that occur frequently in data.
There many kinds of frequent patterns, including itemsets, subsequences, and
substructures.

 A frequent itemset typically refers to a set of items that
frequently appear together in a transactional data set, such as milk and bread.

 A frequently occurring subsequence, such as the pattern that
customers tend to purchase first a PC, followed by a digital camera, and then a
memory card, is a (frequent) sequential pattern.

 A substructure can refer to different structural forms, such as
graphs, trees, or lattices, which may be combined with itemsets ro
subsequences. If a substructure occurs frequently, it is called a (frequent)
structured pattern. Mining frequent patterns lead to discovery of interesting
associations and correlations within data.

 Classification and Prediction
 Classification is the process of finding a model (or function)

that describes and distinguishes data classes or concepts, for the purposes of
being able to use the method to predict the class of objects whose class label is
unknown.

 The derived model is based on the analysis of asset of training
data (i.e., data objects whose class label is known).

 A decision tree is a flow-chart-like tree structure, where each
node denotes a test on an attribute value, each branch represents an outcome of
the test, and tree leaves represent classes or class distributions.

 Decision trees can easily be converted to classification rules.

 Prediction is used to predict missing or unavailable numerical
data values rather than class labels. Regression analysis is a statistical
methodology that is most often used for numeric prediction.

 Age(X,”youth”) AND income(X,”high”) class(X,”A”)
 Age(X,”youth”) AND income(X,”low”) class(X,”B”)
 Age(X,”middle_aged”) class(X,”C”)

 Age(X,”senior”) class(X,”C”)

age?

income?
class C

class A class B

youth

high

low

middle_aged,

senior

 Cluster Analysis
 Clustering analyzes data objects without consulting a known

class label. In general, the data labels are not present in the training data
simple because they are not known to begin with. Clustering can be used to
generate such labels.

 The objects are clustered or grouped based on the principle of
maximizing the intraclass similarity and minimizing the interclass similarity.

 Outlier Analysis
 A database may contain data objects that do not comply with

the general behavior or model of the data. These data objects are outliers.

 Most data mining methods discard outliers as noise or

exceptions.

 However, in some applications such as fraud detection, the rare
events can be more interesting than the more regularly occurring ones.

 The analysis of outlier data is referred to as outlier mining.

 Example : Outlier analysis may uncover fraudulent usage of credit cards by
detecting purchases of extremely large amounts for a given account number in
comparison to regular charges incurred by the same account.

 Evolution Analysis

 Data evolution analysis describes and models regularities or

trends for objects whose behavior changes over time.

 Example: A data mining study of stock exchange data may identify stock
evolution regularities for overall stocks and for the stocks of particular
companies.

 Interestingness of Pattern

 A data mining system has the potential to generate thousands of
patterns, or rules. But only a small fraction of the patterns potentially generated
would actually be of interest to any giver user.

 An interesting pattern represents knowledge.

 Several objective measures of pattern interestingness exist.
 An objective measure for association rules of the form S ==> Y

is rule support

 Another objective measure of association rules is confidence

 support(X=> Y) = P(XUY)

 confidence(X=> Y) = P(Y/X)

 No. of tuples containing both X and Y

 support (X=> Y) = ---

 total number of tuples

 No. of tuples_ containing both X and Y

 confidence (X=> Y) = --

 Number of tuples containing X

 Classification of Data Mining Systems

 Data mining is an interdisciplinary field, including database
systems, statistics, machine learning, visualization, and information science

 Data mining systems can be categorized according to various
criteria

 Classification according to the kinds of databases mined:

 A data mining system can be classified according to the kinds
of databases mined.

 If classifying according to the special types of data handles,
time-series, text stream data, multimedia data mining systems, or World Wide
Web mining system.

 Classification according to the kinds of techniques utilized:

 Data mining systems can be categorized according to the
underlying data mining techniques employed.

 Classification according to the applications adopted:

 Data mining systems can also be categorized according to the
applications they adapt. For example, data mining systems may be tailored
specifically for finance, telecommunications, DNA, stock markets, e-mail, and
so on.

Data Mining Information

Science

Machine

learning

Database
technology Statistics

Visualization Other

disciplines

 Data Mining Task Primitives

 A data mining query is defined in terms of data mining task

primitives. These primitives allow the user interactively communicate with the
data mining system during discovery in order to direct the mining process, or
examine the findings from different angels or depths.

 The data mining primitives specify the following.

 The set of task-relevant data to be mined: This specifies the portions of the
database or the set of data in which the user is interested. This includes the
database attributes or data warehouse dimensions of interest.

 The kind of knowledge to be mined: This specifies the data mining functions to
be performed, such as characterization, discrimination, association or
correlation analysis, classification, prediction, clustering, outlier analysis, or
evolution analysis.

 The background knowledge to be used in the discovery process: This
knowledge about the domain to be mined is useful for guiding the knowledge
discovery

 process and for evaluating the patterns found.

 The interestingness measures and thresholds for pattern evaluation: They may
be used to guide the mining process or , after discovery, to evaluate the
discovered patterns. Different kinds of knowledge may have different

interestingness measure.
 The expected representation for visualizing the discovered patterns: This

refers to the form in which discovered patterns are to be displayed, which may
include rules, tables, charts, graphs, decision trees, and cubes.

 Integration of a Data Mining System with a Database or Data Warehouse

System

 The possible integration schemes are as follows.

 No coupling:

 Data mining system will not utilize any function of a Database
or Data warehouse system. It may fetch data from a particular source (such as a
file system), process data using some data mining algorithms, and then the
mining results in another file.

 Loose coupling:

 Data mining system will use some facilities of a Database or
Data warehouse system fetching data from a data repository managed by these
systems, performing data mining, and then storing the mining results either in a
file or in a designated place in a database or data warehouse.

 Semitight coupling:

 Besides linking a Data mining system to Database /Data
warehouse system, efficient implementations of a few essential data mining
primitives can be provided in the Database/Data warehouse system.

 These primitives can include sorting, indexing, aggregation,
histogram analysis, multiway join, and precomputation of some essential
statistical measure, such as sum, count, max, min, standard deviation, and so
on.

 Tight coupling:

 Data mining system is smoothly integrated into the
Database/Data warehouse system. The data mining subsystem is treated as one
functional component of an information system.

 Major Issues in Data Mining

 The issues in data mining regarding mining methodology are given below.

 Mining methodology and user interaction issues: These reflect the kinds of
knowledge mined, the ability to mine knowledge at multiple granularities, the
use of domain knowledge, ad hoc mining, and knowledge visualization.

 Mining different kinds of knowledge in databases: Because different users can
be interested in different kinds of knowledge, data mining should cover a wide
spectrum of data analysis and knowledge discovery tasks, including data
characterization, discrimination, association and correlation analysis,
classification, prediction, clustering, outlier analysis, and evolution analysis.

 Interactive mining of knowledge at multiple levels of abstraction:

 The data mining process should be interactive.

 Interactive mining allows users to focus the search for patterns,
providing and refining data mining requests based on returned results.
Specifically, knowledge should be drilling down, rolling up, and pivoting
through the data space and knowledge space interactively

 Incorporation of background knowledge:

 Domain knowledge related to databases, such as integrity
constraints and deduction rules, can help focus and speed up a data mining
process, or judge the interestingness of discovered patterns.

 Data mining query languages and ad hoc data mining:

 Data mining query languages need to be developed to allow
users to describe ad hoc data mining tasks by facilitating the specification of
the relevant sets of data for analysis, the domain knowledge, the kinds of
knowledge to be mined, and the conditions and constraints to be enforced on
the discovered patterns.

 Presentation and visualization of data mining results:

 Discovered knowledge should be expressed in high-level
languages, visual representations, or other expressive forms so that the
knowledge can be easily understood and directly usable by humans.

 Handling noisy or incomplete data:

 The data stored in a database may reflect noise, exceptional
cases, or incomplete data objects. When mining data regularities, these objects
may confuse the process, causing the knowledge model constructed to overfit
the data.

 Pattern evaluation-the interestingness problem:

 A data mining system can uncover thousands of patterns.

Why Data Preprocessing?

 Data in the real world is dirty

 incomplete: lacking attribute values, lacking certain attributes
of interest, or containing only aggregate data

 e.g., occupation=“ ”

 noisy: containing errors or outliers

 e.g., Salary=“-10”

 inconsistent: containing discrepancies in codes or names

 e.g., Age=“42” Birthday=“03/07/1997”

 e.g., Was rating “1,2,3”, now rating “A, B, C”

 e.g., discrepancy between duplicate records

Why Is Data Dirty?

 Incomplete data may come from
 “Not applicable” data value when collected

 Different considerations between the time when the data was collected and
when it is analyzed.

 Human/hardware/software problems

 Noisy data (incorrect values) may come from
 Faulty data collection instruments

 Human or computer error at data entry

 Errors in data transmission

 Inconsistent data may come from
 Different data sources

 Functional dependency violation (e.g., modify some linked data)

 Duplicate records also need data cleaning

Why Is Data Preprocessing Important?

 No quality data, no quality mining results!

 Quality decisions must be based on quality data

 e.g., duplicate or missing data may cause incorrect or even misleading

statistics.

 Data warehouse needs consistent integration of quality data

 Data extraction, cleaning, and transformation comprises the majority of the

work of building a data warehouse

Multi-Dimensional Measure of Data Quality

 A well-accepted multidimensional view:
 Accuracy

 Completeness

 Consistency

 Timeliness

 Believability

 Value added

 Interpretability

 Accessibility

 Broad categories:
 Intrinsic, contextual, representational, and accessibility

Major Tasks in Data Preprocessing

 Data cleaning
 Fill in missing values, smooth noisy data, identify or remove outliers, and

resolve inconsistencies

 Data integration
 Integration of multiple databases, data cubes, or files

 Data transformation
 Normalization and aggregation

 Data reduction
 Obtains reduced representation in volume but produces the same or

similar analytical results

 Data discretization
 Part of data reduction but with particular importance, especially for

numerical data

Forms of Data Preprocessing

Measuring the Central Tendency

Mean (algebraic measure) (sample vs. population):

 Weighted arithmetic mean:

 Trimmed mean: chopping extreme values

Median: A holistic measure

 Middle value if odd number of values, or average of the middle two values

otherwise

 Estimated by interpolation (for grouped data):

Mode

 Value that occurs most frequently in the data

 Unimodal, bimodal, trimodal

 Empirical formula:

N

x

n

i

ix
n

x
1

1

n

i

i

n

i

ii

w

xw

x

1

1

c
f

lfn
Lmedian

median

)
)(2/

(1

)(3 medianmeanmodemean

 Symmetric vs. Skewed Data

Median, mean and mode of symmetric,

positively and negatively skewed data

Measuring the Dispersion of Data

Quartiles, outliers and boxplots

 Quartiles: Q1 (25th percentile), Q3 (75th percentile)

 Inter-quartile range: IQR = Q3 – Q1

 Five number summary: min, Q1, M, Q3, max

 Boxplot: ends of the box are the quartiles, median is marked, whiskers,

and plot outlier individually

 Outlier: usually, a value higher/lower than 1.5 x IQR

Variance and standard deviation (sample: s, population: σ)

 Variance: (algebraic, scalable computation)

 Standard deviation s (or σ) is the square root of variance s2 (or σ2)

n

i

i

n

i

i x
N

x
N 1

22

1

22 1
)(

1

n

i

n

i

ii

n

i

i x
n

x
n

xx
n

s
1 1

22

1

22])(
1

[
1

1
)(

1

1

Properties of Normal Distribution Curve

The normal (distribution) curve

 From μ–σ to μ+σ: contains about 68% of the measurements (μ: mean, σ:
standard deviation)

 From μ–2σ to μ+2σ: contains about 95% of it

 From μ–3σ to μ+3σ: contains about 99.7% of it

 Boxplot Analysis

Five-number summary of a distribution:

Minimum, Q1, M, Q3, Maximum

Boxplot

 Data is represented with a box

 The ends of the box are at the first and third quartiles, i.e.,

the height of the box is IRQ

 The median is marked by a line within the box

 Whiskers: two lines outside the box extend to Minimum

and Maximum

Visualization of Data Dispersion: Boxplot Analysis

Histogram Analysis

 Graph displays of basic statistical class
descriptions

 Frequency histograms

 A univariate graphical method

 Consists of a set of rectangles that reflect the counts or
frequencies of the classes present in the given data

Quantile Plot

 Displays all of the data (allowing the user to assess
both the overall behavior and unusual occurrences)

 Plots quantile information

 For a data xi data sorted in increasing order, fi indicates
that approximately 100 fi% of the data are below or equal
to the value xi

Scatter plot

 Provides a first look at bivariate data to see clusters of points, outliers, etc

 Each pair of values is treated as a pair of coordinates and plotted as points in
the plane

Positively and Negatively Correlated Data

 Not Correlated Data

Data Cleaning

 Data cleaning tasks

 Fill in missing values

 Identify outliers and smooth out noisy data

 Correct inconsistent data

 Resolve redundancy caused by data integration

 Missing Data

 Data is not always available

 E.g., many tuples have no recorded value for several attributes, such as

customer income in sales data

 Missing data may be due to

 equipment malfunction

 inconsistent with other recorded data and thus deleted

 data not entered due to misunderstanding

 certain data may not be considered important at the time of entry

 not register history or changes of the data

 Missing data may need to be inferred.

 How to Handle Missing Data?

 Ignore the tuple: usually done when class label is missing

(assuming the tasks in classification—not effective when the

percentage of missing values per attribute varies considerably.

 Fill in the missing value manually: tedious + infeasible?

 Fill in it automatically with

 a global constant : e.g., “unknown”, a new class?!

 the attribute mean

 the attribute mean for all samples belonging to the same class: smarter

 the most probable value: inference-based such as Bayesian formula or

decision tree

 Noisy Data

 Noise: random error or variance in a measured variable

 Incorrect attribute values may due to

 faulty data collection instruments

 data entry problems

 data transmission problems

 technology limitation

 inconsistency in naming convention

 Other data problems which requires data cleaning

 duplicate records

 incomplete data

 inconsistent data

 How to Handle Noisy Data?

 Binning
 first sort data and partition into (equal-frequency) bins

 then one can smooth by bin means, smooth by bin median,
smooth by bin boundaries, etc.

 Regression
 smooth by fitting the data into regression functions

 Clustering
 detect and remove outliers

 Combined computer and human inspection
 detect suspicious values and check by human (e.g., deal with

possible outliers)

Simple Discretization Methods: Binning

 Equal-width (distance) partitioning

 Divides the range into N intervals of equal size: uniform grid

 if A and B are the lowest and highest values of the attribute, the width of

intervals will be: W = (B –A)/N.

 The most straightforward, but outliers may dominate presentation

 Skewed data is not handled well

 Equal-depth (frequency) partitioning

 Divides the range into N intervals, each containing approximately same

number of samples

 Good data scaling

 Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28,
29, 34

 * Partition into equal-frequency (equi-depth) bins:

 - Bin 1: 4, 8, 9, 15

 - Bin 2: 21, 21, 24, 25

 - Bin 3: 26, 28, 29, 34

 * Smoothing by bin means:

 - Bin 1: 9, 9, 9, 9

 - Bin 2: 23, 23, 23, 23

 - Bin 3: 29, 29, 29, 29

 * Smoothing by bin boundaries:

 - Bin 1: 4, 4, 4, 15

 - Bin 2: 21, 21, 25, 25

 - Bin 3: 26, 26, 26, 34

Regression

x

y

y = x + 1

X1

Y1

Y1’

Cluster Analysis

Data Integration

 Data integration:
 Combines data from multiple sources into a coherent

store

 Schema integration: e.g., A.cust-id B.cust-#
 Integrate metadata from different sources

 Entity identification problem:
 Identify real world entities from multiple data sources,

e.g., Bill Clinton = William Clinton

 Detecting and resolving data value conflicts
 For the same real world entity, attribute values from

different sources are different

 Possible reasons: different representations, different
scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

 Redundant data occur often when integration of multiple

databases

 Object identification: The same attribute or object may have

different names in different databases

 Derivable data: One attribute may be a “derived” attribute in
another table, e.g., annual revenue

 Redundant attributes may be able to be detected by

correlation analysis

 Careful integration of the data from multiple sources

may help reduce/avoid redundancies and inconsistencies

and improve mining speed and quality

Correlation Analysis (Numerical Data)

Correlation coefficient (also called Pearson’s product
moment coefficient)

where n is the number of tuples, and are the respective means of A and

B, σA and σB are the respective standard deviation of A and B, and Σ(AB) is

the sum of the AB cross-product.

If rA,B > 0, A and B are positively correlated (A’s values
increase as B’s). The higher, the stronger correlation.
rA,B = 0: independent; rA,B < 0: negatively correlated

BABA n

BAnAB

n

BBAA
r BA)1(

)(

)1(

))((
,

A B

Correlation Analysis (Categorical Data)

Χ2 (chi-square) test

The larger the Χ2 value, the more likely the variables

are related

The cells that contribute the most to the Χ2 value are

those whose actual count is very different from the

expected count

Correlation does not imply causality
 # of hospitals and # of car-theft in a city are correlated

 Both are causally linked to the third variable: population

Expected

ExpectedObserved
2

2)(

Data Transformation

 Smoothing: remove noise from data

 Aggregation: summarization, data cube construction

 Generalization: concept hierarchy climbing

 Normalization: scaled to fall within a small, specified

range

 min-max normalization

 z-score normalization

 normalization by decimal scaling

 Attribute/feature construction

 New attributes constructed from the given ones

Data Reduction Strategies

 Why data reduction?
 A database/data warehouse may store terabytes of data

 Complex data analysis/mining may take a very long time to
run on the complete data set

 Data reduction
 Obtain a reduced representation of the data set that is much

smaller in volume but yet produce the same (or almost the
same) analytical results

 Data reduction strategies
 Data cube aggregation:

 Dimensionality reduction — e.g., remove unimportant
attributes

 Data Compression

 Numerosity reduction — e.g., fit data into models

 Discretization and concept hierarchy generation

Data Cube Aggregation

 The lowest level of a data cube (base cuboid)

 The aggregated data for an individual entity of interest

 E.g., a customer in a phone calling data warehouse

 Multiple levels of aggregation in data cubes

 Further reduce the size of data to deal with

 Reference appropriate levels

 Use the smallest representation which is enough to solve the

task

 Queries regarding aggregated information should be

answered using data cube, when possible

Attribute Subset Selection

 Feature selection (i.e., attribute subset selection):

 Select a minimum set of features such that the probability
distribution of different classes given the values for those
features is as close as possible to the original distribution
given the values of all features

 reduce # of patterns in the patterns, easier to understand

 Heuristic methods (due to exponential # of choices):

 Step-wise forward selection

 Step-wise backward elimination

 Combining forward selection and backward elimination

 Decision-tree induction

Example of Decision Tree Induction

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

A4 ?

A1? A6?

Class 1 Class 2 Class 1 Class 2

> Reduced attribute set: {A1, A4, A6}

Data Compression

 String compression

 There are extensive theories and well-tuned algorithms

 Typically lossless

 But only limited manipulation is possible without expansion

 Audio/video compression

 Typically lossy compression, with progressive refinement

 Sometimes small fragments of signal can be reconstructed
without reconstructing the whole

 Time sequence is not audio

 Typically short and vary slowly with time

Data Compression

Original Data Compressed
Data

lossless

Original Data
Approximated

Dimensionality Reduction: Wavelet Transformation

 Discrete wavelet transform (DWT): linear signal

processing, multi-resolutional analysis

 Compressed approximation: store only a small fraction

of the strongest of the wavelet coefficients

 Similar to discrete Fourier transform (DFT), but better

lossy compression, localized in space

 Method:
 Length, L, must be an integer power of 2 (padding with 0’s, when

necessary)

 Each transform has 2 functions: smoothing, difference

 Applies to pairs of data, resulting in two set of data of length L/2

 Applies two functions recursively, until reaches the desired length

Dimensionality Reduction: Principal Component Analysis (PCA)

 Given N data vectors from n-dimensions, find k ≤ n orthogonal
vectors (principal components) that can be best used to represent
data

 Steps
 Normalize input data: Each attribute falls within the same range

 Compute k orthonormal (unit) vectors, i.e., principal components

 Each input data (vector) is a linear combination of the k principal
component vectors

 The principal components are sorted in order of decreasing “significance”
or strength

 Since the components are sorted, the size of the data can be reduced by
eliminating the weak components, i.e., those with low variance. (i.e.,
using the strongest principal components, it is possible to reconstruct a
good approximation of the original data

 Works for numeric data only

 Used when the number of dimensions is large

X1

X2

Y1

Y2

Principal Component Analysis

Numerosity Reduction

 Reduce data volume by choosing alternative, smaller
forms of data representation

 Parametric methods

 Assume the data fits some model, estimate model parameters,
store only the parameters, and discard the data (except possible
outliers)

 Example: Log-linear models—obtain value at a point in m-D
space as the product on appropriate marginal subspaces

 Non-parametric methods

 Do not assume models

 Major families: histograms, clustering, sampling

Data Reduction Method (1): Regression and Log-Linear Models

 Linear regression: Data are modeled to fit a straight

line

 Often uses the least-square method to fit the line

 Multiple regression: allows a response variable Y to

be modeled as a linear function of multidimensional

feature vector

 Log-linear model: approximates discrete

multidimensional probability distributions

Data Reduction Method (2):

Histograms
 Divide data into buckets and

store average (sum) for each

bucket

 Partitioning rules:

 Equal-width: equal bucket range

 Equal-frequency (or equal-depth)

 V-optimal: with the least

histogram variance (weighted sum

of the original values that each

bucket represents)

 MaxDiff: set bucket boundary

between each pair for pairs have

the β–1 largest differences

0

5

10

15

20

25

30

35

40

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Data Reduction Method (3): Clustering

 Partition data set into clusters based on similarity, and store

cluster representation (e.g., centroid and diameter) only

 Can be very effective if data is clustered but not if data is

“smeared”

 Can have hierarchical clustering and be stored in multi-

dimensional index tree structures

 There are many choices of clustering definitions and clustering

algorithms

Data Reduction Method (4): Sampling

 Sampling: obtaining a small sample s to represent the
whole data set N

 Allow a mining algorithm to run in complexity that is
potentially sub-linear to the size of the data

 Choose a representative subset of the data
 Simple random sampling may have very poor performance

in the presence of skew

 Develop adaptive sampling methods
 Stratified sampling:

 Approximate the percentage of each class (or subpopulation of
interest) in the overall database

 Used in conjunction with skewed data

 Note: Sampling may not reduce database I/Os (page at
a time)

Sampling: Cluster or Stratified Sampling

Raw Data Cluster/Stratified Sample

Discretization

 Three types of attributes:

 Nominal — values from an unordered set, e.g., color, profession

 Ordinal — values from an ordered set, e.g., military or academic rank

 Continuous — real numbers, e.g., integer or real numbers

 Discretization:

 Divide the range of a continuous attribute into intervals

 Some classification algorithms only accept categorical attributes.

 Reduce data size by discretization

 Prepare for further analysis

Discretization and Concept Hierarchy

 Discretization

 Reduce the number of values for a given continuous attribute by dividing

the range of the attribute into intervals

 Interval labels can then be used to replace actual data values

 Supervised vs. unsupervised

 Split (top-down) vs. merge (bottom-up)

 Discretization can be performed recursively on an attribute

 Concept hierarchy formation

 Recursively reduce the data by collecting and replacing low level

concepts (such as numeric values for age) by higher level concepts (such

as young, middle-aged, or senior)

Discretization and Concept Hierarchy Generation for Numeric Data

 Typical methods: All the methods can be applied recursively

 Binning (covered above)

 Top-down split, unsupervised,

 Histogram analysis (covered above)

 Top-down split, unsupervised

 Clustering analysis (covered above)

 Either top-down split or bottom-up merge, unsupervised

 Entropy-based discretization: supervised, top-down split

 Interval merging by 2 Analysis: unsupervised, bottom-up merge

 Segmentation by natural partitioning: top-down split, unsupervised

Entropy-Based Discretization

 Given a set of samples S, if S is partitioned into two intervals S1

and S2 using boundary T, the information gain after partitioning

is

 Entropy is calculated based on class distribution of the samples

in the set. Given m classes, the entropy of S1 is

where pi is the probability of class i in S1

 The boundary that minimizes the entropy function over all

possible boundaries is selected as a binary discretization

 The process is recursively applied to partitions obtained until

some stopping criterion is met

 Such a boundary may reduce data size and improve

)(
||

||
)(

||

||
),(2

2
1

1
SEntropy

S

S
SEntropy

S

S
TSI

m

i

ii ppSEntropy
1

21)(log)(

Segmentation by Natural Partitioning

 A simply 3-4-5 rule can be used to segment numeric

data into relatively uniform, “natural” intervals.
 If an interval covers 3, 6, 7 or 9 distinct values at the most

significant digit, partition the range into 3 equi-width

intervals

 If it covers 2, 4, or 8 distinct values at the most significant

digit, partition the range into 4 intervals

 If it covers 1, 5, or 10 distinct values at the most significant

digit, partition the range into 5 intervals

Example of 3-4-5 Rule

(-$400 -$5,000)

(-$400 - 0)

(-$400 -
 -$300)

(-$300 -
 -$200)

(-$200 -
 -$100)

(-$100 -
 0)

(0 - $1,000)

(0 -
 $200)

($200 -
 $400)

($400 -
 $600)

($600 -
 $800) ($800 -

 $1,000)

($2,000 - $5, 000)

($2,000 -
 $3,000)

($3,000 -
 $4,000)

($4,000 -
 $5,000)

($1,000 - $2, 000)

($1,000 -
 $1,200)

($1,200 -
 $1,400)

($1,400 -
 $1,600)

($1,600 -
 $1,800)

($1,800 -
 $2,000)

 msd=1,000 Low=-$1,000 High=$2,000 Step 2:

Step 4:

Step 1: -$351 -$159 profit $1,838 $4,700

 Min Low (i.e, 5%-tile) High(i.e, 95%-0 tile) Max

count

(-$1,000 - $2,000)

(-$1,000 - 0) (0 -$ 1,000)

Step 3:

($1,000 - $2,000)

Concept Hierarchy Generation for Categorical Data

 Specification of a partial/total ordering of attributes

explicitly at the schema level by users or experts

 street < city < state < country

 Specification of a hierarchy for a set of values by

explicit data grouping

 {Urbana, Champaign, Chicago} < Illinois

 Specification of only a partial set of attributes

 E.g., only street < city, not others

 Automatic generation of hierarchies (or attribute levels)

by the analysis of the number of distinct values

 E.g., for a set of attributes: {street, city, state, country}

Automatic Concept Hierarchy Generation

 Some hierarchies can be automatically generated based
on the analysis of the number of distinct values per
attribute in the data set
 The attribute with the most distinct values is placed at the

lowest level of the hierarchy

 Exceptions, e.g., weekday, month, quarter, year

country

province_or_ state

city

street

15 distinct values

365 distinct values

3567 distinct values

674,339 distinct values

U

N

I

T

IV

Association Rule Mining

and

Classification

What Is Association Mining?

 Association rule mining:

 Finding frequent patterns, associations, correlations, or causal structures
among sets of items or objects in transaction databases, relational databases,
and other information repositories.

 Applications:

 Basket data analysis, cross-marketing, catalog design, loss-leader analysis,
clustering, classification, etc.

 Examples.

 Rule form: “Body → Head [support, confidence]”.
 buys(x, “diapers”) → buys(x, “beers”) [0.5%, 60%]
 major(x, “CS”) ^ takes(x, “DB”) → grade(x, “A”) [1%, 75%]

I= { I1,I2,I3,………..Im} set of items

T – transactions such that T I.

 TID – Transaction ID

 Set of items called itemset

 Itemset contains k-items then it is k-itemset

 Support count

 The occurrence frequency of an itemset is the number of transactions that contain
the itemset.

 Frequent itemset

 The support count satisfies a predefined minimum support threshold

Association Rule: Basic Concepts

Association Rule: Basic Concepts

 Given: (1) database of transactions, (2) each transaction is a list of items (purchased
by a customer in a visit)

 Find: all rules that correlate the presence of one set of items with that of another set
of items

 E.g., 98% of people who purchase tires and auto accessories also get
automotive services done

 Applications

 * Maintenance Agreement (What the store should do to boost Maintenance
Agreement sales)

 Home Electronics * (What other products should the store stocks up?)

 Attached mailing in direct marketing

 Detecting “ping-pong”ing of patients, faulty “collisions”

Rule Measures: Support and Confidence

 Find all the rules X & Y Z with minimum
confidence and support

 support, s, probability that a transaction
contains {X Y Z}

 confidence, c, conditional probability that
a transaction having {X ∩ Y} also
contains Z

Transaction ID Items Bought

2000 A,B,C

1000 A,C

4000 A,D

5000 B,E,F

Let minimum support 50%, and minimum

confidence 50%, we have

 A C (50%, 66.6%)

 C A (50%, 100%)

Customer

buys diaper

Customer

buys both

Customer

buys beer

Association Rule Mining: A Road Map

 Boolean vs. quantitative associations (Based on the types of values handled)

 buys(x, “SQLServer”) ^ buys(x, “DMBook”) → buys(x, “DBMiner”) [0.2%,
60%]

 age(x, “30..39”) ̂ income(x, “42..48K”) → buys(x, “PC”) [1%, 75%]
 Single dimension vs. multiple dimensional associations (see ex. Above)

 Single level vs. multiple-level analysis

 What brands of beers are associated with what brands of diapers?

 Various extensions

 Correlation, causality analysis

 Association does not necessarily imply correlation or causality

 Maxpatterns and closed itemsets

 Constraints enforced

 E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?

Frequent Patterns and Association Rules

 Itemset X = {x1, …, xk}

 Find all the rules X Y with minimum
support and confidence

 support, s, probability that a transaction
contains X Y

 confidence, c, conditional probability
that a transaction having X also
contains Y

Let supmin = 50%, confmin = 50%

Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}

Association rules:

A D (60%, 100%)

D A (60%, 75%)

Customer

buys diaper

Customer

buys both

Customer

buys beer

Transaction-id Items bought

10 A, B, D

20 A, C, D

30 A, D, E

40 B, E, F

50 B, C, D, E, F

What Is Frequent Pattern Analysis?

 Frequent pattern: a pattern (a set of items, subsequences, substructures,

etc.) that occurs frequently in a data set

 First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context

of frequent itemsets and association rule mining

 Motivation: Finding inherent regularities in data

 What products were often purchased together?— Beer and diapers?!

 What are the subsequent purchases after buying a PC?

 What kinds of DNA are sensitive to this new drug?

 Can we automatically classify web documents?

 Applications

 Basket data analysis, cross-marketing, catalog design, sale campaign

analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

 Discloses an intrinsic and important property of data sets

 Forms the foundation for many essential data mining tasks

 Association, correlation, and causality analysis

 Sequential, structural (e.g., sub-graph) patterns

 Pattern analysis in spatiotemporal, multimedia, time-

series, and stream data

 Classification: associative classification

 Cluster analysis: frequent pattern-based clustering

 Data warehousing: iceberg cube and cube-gradient

 Semantic data compression: fascicles

 Broad applications

Closed Patterns and Max-Patterns

 A long pattern contains a combinatorial number of sub-

patterns, e.g., {a1, …, a100} contains (100
1) + (100

2) + … +
(1

1
0
0
0
0) = 2100 – 1 = 1.27*1030 sub-patterns!

 Solution: Mine closed patterns and max-patterns instead

 An itemset X is closed if X is frequent and there exists no
super-pattern Y כ X, with the same support as X

 An itemset X is a max-pattern if X is frequent and there

exists no frequent super-pattern Y כ X Closed pattern is a

lossless compression of freq. patterns

 Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

 Exercise. DB = {<a1, …, a100>, < a1, …, a50>}

 Min_sup = 1.

 What is the set of closed itemset?

 <a1, …, a100>: 1

 < a1, …, a50>: 2

 What is the set of max-pattern?

 <a1, …, a100>: 1

 What is the set of all patterns?

 !!

Scalable Methods for Mining Frequent Patterns

 The downward closure property of frequent patterns

 Any subset of a frequent itemset must be frequent

 If {beer, diaper, nuts} is frequent, so is {beer,
diaper}

 i.e., every transaction having {beer, diaper, nuts} also
contains {beer, diaper}

 Scalable mining methods: Three major approaches

 Apriori (Agrawal & Srikant@VLDB’94)
 Freq. pattern growth (FPgrowth—Han, Pei & Yin

@SIGMOD’00)
 Vertical data format approach (Charm—Zaki & Hsiao

@SDM’02)

Apriori: A Candidate Generation-and-Test Approach

 Apriori pruning principle: If there is any itemset which is

infrequent, its superset should not be generated/tested!

(Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)
 Method:

 Initially, scan DB once to get frequent 1-itemset

 Generate length (k+1) candidate itemsets from length k

frequent itemsets

 Test the candidates against DB

 Terminate when no frequent or candidate set can be

generated

The Apriori Algorithm—An Example

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L3 3rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

The Apriori Algorithm

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database do

 increment the count of all candidates in Ck+1
that are contained in t

 Lk+1 = candidates in Ck+1 with min_support
 end
return k Lk;

Important Details of Apriori

 How to generate candidates?

 Step 1: self-joining Lk

 Step 2: pruning

 How to count supports of candidates?

 Example of Candidate-generation

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3*L3

 abcd from abc and abd

 acde from acd and ace

 Pruning:

 acde is removed because ade is not in L3

 C4={abcd}

How to Generate Candidates?

 Suppose the items in Lk-1 are listed in an order

 Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 <

q.itemk-1

 Step 2: pruning

forall itemsets c in Ck do

forall (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck

How to Count Supports of Candidates?

 Why counting supports of candidates a problem?

 The total number of candidates can be very huge

 One transaction may contain many candidates

 Method:

 Candidate itemsets are stored in a hash-tree

 Leaf node of hash-tree contains a list of itemsets and

counts

 Interior node contains a hash table

 Subset function: finds all the candidates contained in

a transaction

Example: Counting Supports of Candidates

1,4,7

2,5,8

3,6,9
Subset function

2 3 4
5 6 7

1 4 5
1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

Transaction: 1 2 3 5 6

1 + 2 3 5 6

1 2 + 3 5 6

1 3 + 5 6

Efficient Implementation of Apriori in SQL

 Hard to get good performance out of pure SQL (SQL-

92) based approaches alone

 Make use of object-relational extensions like UDFs,

BLOBs, Table functions etc.

 Get orders of magnitude improvement

 S. Sarawagi, S. Thomas, and R. Agrawal. Integrating

association rule mining with relational database

systems: Alternatives and implications. In SIGMOD’98

Challenges of Frequent Pattern Mining

 Challenges

 Multiple scans of transaction database

 Huge number of candidates

 Tedious workload of support counting for candidates

 Improving Apriori: general ideas

 Reduce passes of transaction database scans

 Shrink number of candidates

 Facilitate support counting of candidates

Partition: Scan Database Only Twice

 Any itemset that is potentially frequent in DB must be

frequent in at least one of the partitions of DB

 Scan 1: partition database and find local frequent

patterns

 Scan 2: consolidate global frequent patterns

 A. Savasere, E. Omiecinski, and S. Navathe. An efficient

algorithm for mining association in large databases. In

VLDB’95

DHP: Reduce the Number of Candidates

 A k-itemset whose corresponding hashing bucket count is

below the threshold cannot be frequent

 Candidates: a, b, c, d, e

 Hash entries: {ab, ad, ae} {bd, be, de} …

 Frequent 1-itemset: a, b, d, e

 ab is not a candidate 2-itemset if the sum of count of

{ab, ad, ae} is below support threshold

 J. Park, M. Chen, and P. Yu. An effective hash-based

algorithm for mining association rules. In SIGMOD’95

Sampling for Frequent Patterns

 Select a sample of original database, mine frequent

patterns within sample using Apriori

 Scan database once to verify frequent itemsets found in

sample, only borders of closure of frequent patterns are

checked

 Example: check abcd instead of ab, ac, …, etc.
 Scan database again to find missed frequent patterns

 H. Toivonen. Sampling large databases for association

rules. In VLDB’96

DIC: Reduce Number of Scans

ABCD

ABC ABD ACD BCD

AB AC BC AD BD CD

A B C D

{}

Itemset lattice

 Once both A and D are determined
frequent, the counting of AD begins

 Once all length-2 subsets of BCD are
determined frequent, the counting of BCD
begins

Transactions

1-itemsets
2-itemsets

…
Apriori

1-itemsets
2-items

3-items DIC

S. Brin R. Motwani, J. Ullman,
and S. Tsur. Dynamic itemset
counting and implication rules for
market basket data. In
SIGMOD’97

Bottleneck of Frequent-pattern Mining

 Multiple database scans are costly

 Mining long patterns needs many passes of

scanning and generates lots of candidates

 To find frequent itemset i1i2…i100

 # of scans: 100

 # of Candidates: (100
1) + (100

2) + … + (1
1
0
0
0
0) = 2100-

1 = 1.27*1030 !

 Bottleneck: candidate-generation-and-test

 Can we avoid candidate generation?

Mining Frequent Patterns Without
Candidate Generation

 Grow long patterns from short ones using local

frequent items

 “abc” is a frequent pattern

 Get all transactions having “abc”: DB|abc

 “d” is a local frequent item in DB|abc abcd is

a frequent pattern

Construct FP-tree from a Transaction Database

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find
frequent 1-itemset
(single item pattern)

2. Sort frequent items in
frequency descending
order, f-list

3. Scan DB again,
construct FP-tree

F-list=f-c-a-b-m-p

Benefits of the FP-tree Structure

 Completeness

 Preserve complete information for frequent pattern
mining

 Never break a long pattern of any transaction

 Compactness

 Reduce irrelevant info—infrequent items are gone

 Items in frequency descending order: the more
frequently occurring, the more likely to be shared

 Never be larger than the original database (not count
node-links and the count field)

 For Connect-4 DB, compression ratio could be over 100

Partition Patterns and Databases

 Frequent patterns can be partitioned into subsets
according to f-list

 F-list=f-c-a-b-m-p

 Patterns containing p

 Patterns having m but no p

 …

 Patterns having c but no a nor b, m, p

 Pattern f

 Completeness and non-redundency

Find Patterns Having P From P-conditional Database

 Starting at the frequent item header table in the FP-tree
 Traverse the FP-tree by following the link of each frequent item p
 Accumulate all of transformed prefix paths of item p to form p’s

conditional pattern base

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

From Conditional Pattern-bases to Conditional FP-trees

 For each pattern-base

 Accumulate the count for each item in the base

 Construct the FP-tree for the frequent items of the
pattern base

m-conditional pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent
patterns relate to m

m,

fm, cm, am,

fcm, fam, cam,

fcam

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table
Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

Recursion: Mining Each Conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3

am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)
{}

f:3

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

 Suppose a (conditional) FP-tree T has a shared

single prefix-path P

 Mining can be decomposed into two parts

 Reduction of the single prefix path into one node

 Concatenation of the mining results of the two

parts

a2:n2

a3:n3

a1:n1

{}

b1:m1
C1:k1

C2:k2 C3:k3

b1:m1
C1:k1

C2:k2 C3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =

Mining Frequent Patterns With FP-trees

 Idea: Frequent pattern growth

 Recursively grow frequent patterns by pattern and
database partition

 Method

 For each frequent item, construct its conditional
pattern-base, and then its conditional FP-tree

 Repeat the process on each newly created conditional
FP-tree

 Until the resulting FP-tree is empty, or it contains only
one path—single path will generate all the
combinations of its sub-paths, each of which is a
frequent pattern

Scaling FP-growth by DB Projection

 FP-tree cannot fit in memory?—DB projection

 First partition a database into a set of projected DBs

 Then construct and mine FP-tree for each projected DB

 Parallel projection vs. Partition projection techniques

 Parallel projection is space costly

Partition-based Projection

 Parallel projection needs a lot

of disk space

 Partition projection saves it

Tran. DB
fcamp
fcabm
fb
cbp
fcamp

p-proj DB
fcam
cb
fcam

m-proj DB
fcab
fca
fca

b-proj DB
f
cb
…

a-proj DB
fc
…

c-proj DB
f
…

f-proj DB
…

am-proj DB
fc
fc
fc

cm-proj DB
f
f
f

…

FP-Growth vs. Apriori: Scalability With the Support
Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Support threshold(%)

R
u

n
 t

im
e

(s
e

c.
)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

FP-Growth vs. Tree-Projection: Scalability with
the Support Threshold

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Support threshold (%)

R
u

n
ti

m
e
 (

s
e
c
.)

D2 FP-growth

D2 TreeProjection

Data set T25I20D100K

Why Is FP-Growth the Winner?

 Divide-and-conquer:

 decompose both the mining task and DB according to

the frequent patterns obtained so far

 leads to focused search of smaller databases

 Other factors

 no candidate generation, no candidate test

 compressed database: FP-tree structure

 no repeated scan of entire database

 basic ops—counting local freq items and building sub

FP-tree, no pattern search and matching

Implications of the Methodology

 Mining closed frequent itemsets and max-patterns

 CLOSET (DMKD’00)
 Mining sequential patterns

 FreeSpan (KDD’00), PrefixSpan (ICDE’01)
 Constraint-based mining of frequent patterns

 Convertible constraints (KDD’00, ICDE’01)
 Computing iceberg data cubes with complex measures

 H-tree and H-cubing algorithm (SIGMOD’01)

MaxMiner: Mining Max-patterns

 1st scan: find frequent items

 A, B, C, D, E

 2nd scan: find support for

 AB, AC, AD, AE, ABCDE

 BC, BD, BE, BCDE

 CD, CE, CDE, DE,

 Since BCDE is a max-pattern, no need to check BCD, BDE,

CDE in later scan

 R. Bayardo. Efficiently mining long patterns from

databases. In SIGMOD’98

Tid Items

10 A,B,C,D,E

20 B,C,D,E,

30 A,C,D,F

Potential
max-patterns

Mining Frequent Closed Patterns: CLOSET

 Flist: list of all frequent items in support ascending order

 Flist: d-a-f-e-c

 Divide search space

 Patterns having d

 Patterns having d but no a, etc.

 Find frequent closed pattern recursively

 Every transaction having d also has cfa cfad is a

frequent closed pattern

 J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for

Mining Frequent Closed Itemsets", DMKD'00.

TID Items

10 a, c, d, e, f

20 a, b, e

30 c, e, f

40 a, c, d, f

50 c, e, f

Min_sup=2

CLOSET+: Mining Closed Itemsets by
Pattern-Growth

 Itemset merging: if Y appears in every occurrence of X, then Y

is merged with X

 Sub-itemset pruning: if Y כ X, and sup(X) = sup(Y), X and all of

X’s descendants in the set enumeration tree can be pruned

 Hybrid tree projection

 Bottom-up physical tree-projection

 Top-down pseudo tree-projection

 Item skipping: if a local frequent item has the same support in

several header tables at different levels, one can prune it from

the header table at higher levels

 Efficient subset checking

CHARM: Mining by Exploring Vertical Data Format

 Vertical format: t(AB) = {T11, T25, …}

 tid-list: list of trans.-ids containing an itemset

 Deriving closed patterns based on vertical intersections

 t(X) = t(Y): X and Y always happen together

 t(X) t(Y): transaction having X always has Y

 Using diffset to accelerate mining

 Only keep track of differences of tids

 t(X) = {T1, T2, T3}, t(XY) = {T1, T3}

 Diffset (XY, X) = {T2}

 Eclat/MaxEclat (Zaki et al. @KDD’97), VIPER(P. Shenoy et
al.@SIGMOD’00), CHARM (Zaki & Hsiao@SDM’02)

Further Improvements of Mining Methods

 AFOPT

 A “push-right” method for mining condensed frequent
pattern (CFP) tree

 Carpenter

 Mine data sets with small rows but numerous columns

 Construct a row-enumeration tree for efficient mining

Visualization of Association Rules: Plane Graph

Visualization of Association Rules: Rule Graph

Visualization of Association Rules
(SGI/MineSet 3.0)

Mining Various Kinds of Association Rules

 Mining multilevel association

 Miming multidimensional association

 Mining quantitative association

 Mining interesting correlation patterns

Mining Multiple-Level Association Rules

 Items often form hierarchies

 Flexible support settings

 Items at the lower level are expected to have lower
support

 Exploration of shared multi-level mining (Agrawal &
Srikant@VLB’95, Han & Fu@VLDB’95)

uniform support

Milk

[support = 10%]

2% Milk

[support = 6%]

Skim Milk

[support = 4%]

Level 1

min_sup = 5%

Level 2

min_sup = 5%

Level 1

min_sup = 5%

Level 2

min_sup = 3%

reduced support

Multi-level Association: Redundancy Filtering

 Some rules may be redundant due to “ancestor”
relationships between items.

 Example

 milk wheat bread [support = 8%, confidence = 70%]

 2% milk wheat bread [support = 2%, confidence = 72%]

 We say the first rule is an ancestor of the second rule.

 A rule is redundant if its support is close to the “expected”
value, based on the rule’s ancestor.

Mining Multi-Dimensional Association

 Single-dimensional rules:

buys(X, “milk”) buys(X, “bread”)
 Multi-dimensional rules: 2 dimensions or predicates

 Inter-dimension assoc. rules (no repeated predicates)
age(X,”19-25”) occupation(X,“student”) buys(X, “coke”)

 hybrid-dimension assoc. rules (repeated predicates)
age(X,”19-25”) buys(X, “popcorn”) buys(X, “coke”)

 Categorical Attributes: finite number of possible values, no

ordering among values—data cube approach

 Quantitative Attributes: numeric, implicit ordering among

values—discretization, clustering, and gradient approaches

Mining Quantitative Associations

 Techniques can be categorized by how numerical
attributes, such as age or salary are treated

1. Static discretization based on predefined concept

hierarchies (data cube methods)

2. Dynamic discretization based on data distribution

(quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)

3. Clustering: Distance-based association (e.g., Yang &

Miller@SIGMOD97)

 one dimensional clustering then association

4. Deviation: (such as Aumann and Lindell@KDD99)

Sex = female => Wage: mean=$7/hr (overall mean = $9)

Static Discretization of Quantitative Attributes

 Discretized prior to mining using concept hierarchy.

 Numeric values are replaced by ranges.

 In relational database, finding all frequent k-predicate sets

will require k or k+1 table scans.

 Data cube is well suited for mining.

 The cells of an n-dimensional

cuboid correspond to the

predicate sets.

 Mining from data cubes

can be much faster.

(income) (age)

()

(buys)

(age, income) (age,buys) (income,buys)

(age,income,buys)

Quantitative Association Rules

age(X,”34-35”) income(X,”30-50K”)
 buys(X,”high resolution TV”)

 Proposed by Lent, Swami and Widom ICDE’97

 Numeric attributes are dynamically discretized

 Such that the confidence or compactness of the rules
mined is maximized

 2-D quantitative association rules: Aquan1 Aquan2 Acat

 Cluster adjacent
association rules
to form general
rules using a 2-D grid

 Example

Mining Other Interesting Patterns

 Flexible support constraints

 Some items (e.g., diamond) may occur rarely but are

valuable

 Customized supmin specification and application

 Top-K closed frequent patterns

 Hard to specify supmin, but top-k with lengthmin is more

desirable

 Dynamically raise supmin in FP-tree construction and

mining, and select most promising path to mine

Interestingness Measure: Correlations (Lift)

 play basketball eat cereal [40%, 66.7%] is misleading

 The overall % of students eating cereal is 75% > 66.7%.

 play basketball not eat cereal [20%, 33.3%] is more accurate,

although with lower support and confidence

 Measure of dependent/correlated events: lift

89.0
5000/3750*5000/3000

5000/2000
),(CBlift

Basketball Not basketball Sum (row)

Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000
)()(

)(

BPAP

BAP
lift

33.1
5000/1250*5000/3000

5000/1000
),(CBlift

Are lift and 2 Good Measures of Correlation?

 “Buy walnuts buy milk [1%, 80%]” is misleading

 if 85% of customers buy milk

 Support and confidence are not good to represent correlations

 So many interestingness measures? (Tan, Kumar, Sritastava @KDD’02)

Milk No Milk Sum (row)

Coffee m, c ~m, c c

No Coffee m, ~c ~m, ~c ~c

Sum(col.) m ~m

)()(

)(

BPAP

BAP
lift

DB m, c ~m, c m~c ~m~c lift all-conf coh 2

A1 1000 100 100 10,000 9.26 0.91 0.83 9055

A2 100 1000 1000 100,000 8.44 0.09 0.05 670

A3 1000 100 10000 100,000 9.18 0.09 0.09 8172

A4 1000 1000 1000 1000 1 0.5 0.33 0

)sup(_max_

)sup(
_

Xitem

X
confall

|)(|

)sup(

Xuniverse

X
coh

Which Measures Should Be Used?

 lift and 2 are not
good measures for
correlations in large
transactional DBs

 all-conf or
coherence could be
good measures
(Omiecinski@TKDE’03)

 Both all-conf and
coherence have the
downward closure
property

 Efficient algorithms
can be derived for
mining (Lee et al.
@ICDM’03sub)

Constraint-based (Query-Directed) Mining

 Finding all the patterns in a database autonomously? —

unrealistic!

 The patterns could be too many but not focused!

 Data mining should be an interactive process

 User directs what to be mined using a data mining

query language (or a graphical user interface)

 Constraint-based mining

 User flexibility: provides constraints on what to be

mined

 System optimization: explores such constraints for

efficient mining—constraint-based mining

Constraints in Data Mining

 Knowledge type constraint:

 classification, association, etc.

 Data constraint — using SQL-like queries

 find product pairs sold together in stores in Chicago in
Dec.’02

 Dimension/level constraint

 in relevance to region, price, brand, customer category

 Rule (or pattern) constraint

 small sales (price < $10) triggers big sales (sum >
$200)

 Interestingness constraint

 strong rules: min_support 3%, min_confidence
60%

Constrained Mining vs. Constraint-Based Search

 Constrained mining vs. constraint-based search/reasoning

 Both are aimed at reducing search space

 Finding all patterns satisfying constraints vs. finding
some (or one) answer in constraint-based search in AI

 Constraint-pushing vs. heuristic search

 It is an interesting research problem on how to integrate
them

 Constrained mining vs. query processing in DBMS

 Database query processing requires to find all

 Constrained pattern mining shares a similar philosophy
as pushing selections deeply in query processing

Anti-Monotonicity in Constraint Pushing

 Anti-monotonicity

 When an intemset S violates the
constraint, so does any of its superset

 sum(S.Price) v is anti-monotone

 sum(S.Price) v is not anti-monotone

 Example. C: range(S.profit) 15 is anti-

monotone

 Itemset ab violates C

 So does every superset of ab

TID Transaction

10 a, b, c, d, f

20 b, c, d, f, g, h

30 a, c, d, e, f

40 c, e, f, g

TDB (min_sup=2)

Item Profit

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10

Monotonicity for Constraint Pushing

 Monotonicity

 When an intemset S satisfies the

constraint, so does any of its

superset

 sum(S.Price) v is monotone

 min(S.Price) v is monotone

 Example. C: range(S.profit) 15

 Itemset ab satisfies C

 So does every superset of ab

TID Transaction

10 a, b, c, d, f

20 b, c, d, f, g, h

30 a, c, d, e, f

40 c, e, f, g

TDB (min_sup=2)

Item Profit

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10

Succinctness

 Succinctness:

 Given A1, the set of items satisfying a succinctness

constraint C, then any set S satisfying C is based on

A1 , i.e., S contains a subset belonging to A1

 Idea: Without looking at the transaction database,

whether an itemset S satisfies constraint C can be

determined based on the selection of items

 min(S.Price) v is succinct

 sum(S.Price) v is not succinct

 Optimization: If C is succinct, C is pre-counting pushable

The Apriori Algorithm — Example

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Naïve Algorithm: Apriori + Constraint

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint:

Sum{S.price} < 5

The Constrained Apriori Algorithm: Push

an Anti-monotone Constraint Deep

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint:

Sum{S.price} < 5

The Constrained Apriori Algorithm: Push a

Succinct Constraint Deep

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint:

min{S.price } <= 1

not immediately
to be used

Converting “Tough” Constraints

 Convert tough constraints into anti-

monotone or monotone by properly

ordering items

 Examine C: avg(S.profit) 25

 Order items in value-descending

order

 <a, f, g, d, b, h, c, e>

 If an itemset afb violates C

 So does afbh, afb*

 It becomes anti-monotone!

TID Transaction

10 a, b, c, d, f

20 b, c, d, f, g, h

30 a, c, d, e, f

40 c, e, f, g

TDB (min_sup=2)

Item Profit

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10

Strongly Convertible Constraints

 avg(X) 25 is convertible anti-monotone w.r.t.
item value descending order R: <a, f, g, d, b,
h, c, e>

 If an itemset af violates a constraint C, so
does every itemset with af as prefix, such as
afd

 avg(X) 25 is convertible monotone w.r.t. item
value ascending order R-1: <e, c, h, b, d, g, f,
a>

 If an itemset d satisfies a constraint C, so
does itemsets df and dfa, which having d as
a prefix

 Thus, avg(X) 25 is strongly convertible

Item Profit

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10

Can Apriori Handle Convertible Constraint?

 A convertible, not monotone nor anti-monotone
nor succinct constraint cannot be pushed deep
into the an Apriori mining algorithm

 Within the level wise framework, no direct
pruning based on the constraint can be made

 Itemset df violates constraint C: avg(X)>=25

 Since adf satisfies C, Apriori needs df to
assemble adf, df cannot be pruned

 But it can be pushed into frequent-pattern
growth framework!

Item Value

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10

Mining With Convertible Constraints

 C: avg(X) >= 25, min_sup=2

 List items in every transaction in value descending

order R: <a, f, g, d, b, h, c, e>

 C is convertible anti-monotone w.r.t. R

 Scan TDB once

 remove infrequent items

 Item h is dropped

 Itemsets a and f are good, …

 Projection-based mining

 Imposing an appropriate order on item projection

 Many tough constraints can be converted into

(anti)-monotone

TID Transaction

10 a, f, d, b, c

20 f, g, d, b, c

30 a, f, d, c, e

40 f, g, h, c, e

TDB (min_sup=2)

Item Value

a 40

f 30

g 20

d 10

b 0

h -10

c -20

e -30

Handling Multiple Constraints

 Different constraints may require different or even

conflicting item-ordering

 If there exists an order R s.t. both C1 and C2 are

convertible w.r.t. R, then there is no conflict between

the two convertible constraints

 If there exists conflict on order of items

 Try to satisfy one constraint first

 Then using the order for the other constraint to

mine frequent itemsets in the corresponding

projected database

What Constraints Are Convertible?

Constraint
Convertible anti-

monotone
Convertible
monotone

Strongly
convertible

avg(S) , v Yes Yes Yes

median(S) , v Yes Yes Yes

sum(S) v (items could be of any value,
v 0)

Yes No No

sum(S) v (items could be of any value,
v 0)

No Yes No

sum(S) v (items could be of any value,
v 0)

No Yes No

sum(S) v (items could be of any value,
v 0)

Yes No No

……

Constraint-Based Mining—A General Picture

Constraint Antimonotone Monotone Succinct

v S no yes yes

S V no yes yes

S V yes no yes

min(S) v no yes yes

min(S) v yes no yes

max(S) v yes no yes

max(S) v no yes yes

count(S) v yes no weakly

count(S) v no yes weakly

sum(S) v (a S, a 0) yes no no

sum(S) v (a S, a 0) no yes no

range(S) v yes no no

range(S) v no yes no

avg(S) v, { , , } convertible convertible no

support(S) yes no no

support(S) no yes no

A Classification of Constraints

Convertible
anti-monotone

Convertible
monotone

Strongly

convertible

Inconvertible

Succinct

Antimonotone
Monotone

 Classification

 predicts categorical class labels (discrete or nominal)

 classifies data (constructs a model) based on the
training set and the values (class labels) in a
classifying attribute and uses it in classifying new
data

 Prediction

 models continuous-valued functions, i.e., predicts
unknown or missing values

 Typical applications

 Credit approval

 Target marketing

 Medical diagnosis

 Fraud detection

Classification vs. Prediction

Classification—A Two-Step Process

 Model construction: describing a set of predetermined classes

 Each tuple/sample is assumed to belong to a predefined class,
as determined by the class label attribute

 The set of tuples used for model construction is training set

 The model is represented as classification rules, decision trees,
or mathematical formulae

 Model usage: for classifying future or unknown objects

 Estimate accuracy of the model

 The known label of test sample is compared with the
classified result from the model

 Accuracy rate is the percentage of test set samples that are
correctly classified by the model

 Test set is independent of training set, otherwise over-fitting
will occur

 If the accuracy is acceptable, use the model to classify data
tuples whose class labels are not known

Process (1): Model Construction

Training
Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Classifier
(Model)

Process (2): Using the Model in Prediction

Classifier

Testing
Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Supervised vs. Unsupervised Learning

 Supervised learning (classification)

 Supervision: The training data (observations,

measurements, etc.) are accompanied by labels

indicating the class of the observations

 New data is classified based on the training set

 Unsupervised learning (clustering)

 The class labels of training data is unknown

 Given a set of measurements, observations, etc.

with the aim of establishing the existence of classes

or clusters in the data

Issues: Data Preparation

 Data cleaning

 Preprocess data in order to reduce noise and handle

missing values

 Relevance analysis (feature selection)

 Remove the irrelevant or redundant attributes

 Data transformation

 Generalize and/or normalize data

Issues: Evaluating Classification Methods

 Accuracy

 classifier accuracy: predicting class label

 predictor accuracy: guessing value of predicted
attributes

 Speed

 time to construct the model (training time)

 time to use the model (classification/prediction time)

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases

 Interpretability

 understanding and insight provided by the model

 Other measures, e.g., goodness of rules, such as decision
tree size or compactness of classification rules

Decision Tree Induction: Training Dataset

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

This
follows an
example
of
Quinlan’s
ID3
(Playing
Tennis)

Output: A Decision Tree for “buys_computer”

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fair excellent yes no

Algorithm for Decision Tree Induction

 Basic algorithm (a greedy algorithm)

 Tree is constructed in a top-down recursive divide-and-conquer
manner

 At start, all the training examples are at the root

 Attributes are categorical (if continuous-valued, they are
discretized in advance)

 Examples are partitioned recursively based on selected attributes

 Test attributes are selected on the basis of a heuristic or
statistical measure (e.g., information gain)

 Conditions for stopping partitioning

 All samples for a given node belong to the same class

 There are no remaining attributes for further partitioning –
majority voting is employed for classifying the leaf

 There are no samples left

Attribute Selection Measure:
Information Gain (ID3/C4.5)

 Select the attribute with the highest information gain

 Let pi be the probability that an arbitrary tuple in D
belongs to class Ci, estimated by |Ci, D|/|D|

 Expected information (entropy) needed to classify a tuple
in D:

 Information needed (after using A to split D into v
partitions) to classify D:

 Information gained by branching on attribute A

)(log)(2
1

i

m

i

i ppDInfo

)(
||

||
)(

1
j

v

j

j

A DI
D

D
DInfo

(D)InfoInfo(D)Gain(A) A

Attribute Selection: Information Gain

 Class P: buys_computer =
“yes”

 Class N: buys_computer = “no”

 means “age <=30” has 5
out of 14 samples, with 2 yes’es
and 3 no’s. Hence

Similarly,

age pi ni I(pi, ni)

<=30 2 3 0.971

31…40 4 0 0

>40 3 2 0.971

694.0)2,3(
14

5

)0,4(
14

4
)3,2(

14

5
)(

I

IIDInfoage

048.0)_(

151.0)(

029.0)(

ratingcreditGain

studentGain

incomeGain

246.0)()()(DInfoDInfoageGain age
age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

)3,2(
14

5
I

940.0)
14

5
(log

14

5
)

14

9
(log

14

9
)5,9()(22 IDInfo

Computing Information-Gain for
Continuous-Value Attributes

 Let attribute A be a continuous-valued attribute

 Must determine the best split point for A

 Sort the value A in increasing order

 Typically, the midpoint between each pair of adjacent

values is considered as a possible split point

 (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

 The point with the minimum expected information

requirement for A is selected as the split-point for A

 Split:

 D1 is the set of tuples in D satisfying A ≤ split-point, and

D2 is the set of tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection (C4.5)

 Information gain measure is biased towards attributes

with a large number of values

 C4.5 (a successor of ID3) uses gain ratio to overcome the

problem (normalization to information gain)

 GainRatio(A) = Gain(A)/SplitInfo(A)

 Ex.

 gain_ratio(income) = 0.029/0.926 = 0.031

 The attribute with the maximum gain ratio is selected as

the splitting attribute

)
||

||
(log

||

||
)(2

1 D

D

D

D
DSplitInfo

j
v

j

j

A

926.0)
14

4
(log

14

4
)

14

6
(log

14

6
)

14

4
(log

14

4
)(222 DSplitInfoA

Gini index (CART, IBM IntelligentMiner)

 If a data set D contains examples from n classes, gini index, gini(D) is

defined as

 where pj is the relative frequency of class j in D
 If a data set D is split on A into two subsets D1 and D2, the gini index

gini(D) is defined as

 Reduction in Impurity:

 The attribute provides the smallest ginisplit(D) (or the largest reduction

in impurity) is chosen to split the node (need to enumerate all the
possible splitting points for each attribute)

n

j

p jDgini

1

21)(

)(
||

||
)(

||

||
)(2

2
1

1
Dgini

D

D
Dgini

D

D
DginiA

)()()(DginiDginiAgini
A

Gini index (CART, IBM IntelligentMiner)

 Ex. D has 9 tuples in buys_computer = “yes” and 5 in “no”

 Suppose the attribute income partitions D into 10 in D1: {low,

medium} and 4 in D2

but gini{medium,high} is 0.30 and thus the best since it is the lowest

 All attributes are assumed continuous-valued

 May need other tools, e.g., clustering, to get the possible split values

 Can be modified for categorical attributes

459.0
14

5

14

9
1)(

22

Dgini

)(
14

4
)(

14

10
)(11},{ DGiniDGiniDgini mediumlowincome

Comparing Attribute Selection Measures

 The three measures, in general, return good results but

 Information gain:

 biased towards multivalued attributes

 Gain ratio:

 tends to prefer unbalanced splits in which one

partition is much smaller than the others

 Gini index:

 biased to multivalued attributes

 has difficulty when # of classes is large

 tends to favor tests that result in equal-sized

partitions and purity in both partitions

Other Attribute Selection Measures

 CHAID: a popular decision tree algorithm, measure based on χ2 test

for independence

 C-SEP: performs better than info. gain and gini index in certain cases

 G-statistics: has a close approximation to χ2 distribution

 MDL (Minimal Description Length) principle (i.e., the simplest solution

is preferred):

 The best tree as the one that requires the fewest # of bits to both

(1) encode the tree, and (2) encode the exceptions to the tree

 Multivariate splits (partition based on multiple variable combinations)

 CART: finds multivariate splits based on a linear comb. of attrs.

 Which attribute selection measure is the best?

 Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

 Overfitting: An induced tree may overfit the training data

 Too many branches, some may reflect anomalies due to noise or

outliers

 Poor accuracy for unseen samples

 Two approaches to avoid overfitting

 Prepruning: Halt tree construction early—do not split a node if this

would result in the goodness measure falling below a threshold

 Difficult to choose an appropriate threshold

 Postpruning: Remove branches from a “fully grown” tree—get a

sequence of progressively pruned trees

 Use a set of data different from the training data to decide

which is the “best pruned tree”

Enhancements to Basic Decision Tree Induction

 Allow for continuous-valued attributes

 Dynamically define new discrete-valued attributes that
partition the continuous attribute value into a discrete

set of intervals

 Handle missing attribute values

 Assign the most common value of the attribute

 Assign probability to each of the possible values

 Attribute construction

 Create new attributes based on existing ones that are

sparsely represented

 This reduces fragmentation, repetition, and replication

Classification in Large Databases

 Classification—a classical problem extensively studied by

statisticians and machine learning researchers

 Scalability: Classifying data sets with millions of examples

and hundreds of attributes with reasonable speed

 Why decision tree induction in data mining?

 relatively faster learning speed (than other classification
methods)

 convertible to simple and easy to understand
classification rules

 can use SQL queries for accessing databases

 comparable classification accuracy with other methods

Scalable Decision Tree Induction Methods

 SLIQ (EDBT’96 — Mehta et al.)

 Builds an index for each attribute and only class list and
the current attribute list reside in memory

 SPRINT (VLDB’96 — J. Shafer et al.)

 Constructs an attribute list data structure

 PUBLIC (VLDB’98 — Rastogi & Shim)

 Integrates tree splitting and tree pruning: stop growing
the tree earlier

 RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)

 Builds an AVC-list (attribute, value, class label)

 BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & Loh)

 Uses bootstrapping to create several small samples

Scalability Framework for RainForest

 Separates the scalability aspects from the criteria that

determine the quality of the tree

 Builds an AVC-list: AVC (Attribute, Value, Class_label)

 AVC-set (of an attribute X)

 Projection of training dataset onto the attribute X and

class label where counts of individual class label are

aggregated

 AVC-group (of a node n)

 Set of AVC-sets of all predictor attributes at the node n

Rainforest: Training Set and Its AVC Sets

student Buy_Computer

yes no

yes 6 1

no 3 4

Age Buy_Computer

yes no

<=30 3 2

31..40 4 0

>40 3 2

Credit

rating

Buy_Computer

yes no

fair 6 2

excellent 3 3

age income studentcredit_ratinguys_compu

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

AVC-set on income AVC-set on Age

AVC-set on Student

Training Examples
income Buy_Computer

yes no

high 2 2

medium 4 2

low 3 1

AVC-set on
credit_rating

Data Cube-Based Decision-Tree Induction

 Integration of generalization with decision-tree induction

 Classification at primitive concept levels

 E.g., precise temperature, humidity, outlook, etc.

 Low-level concepts, scattered classes, bushy

classification-trees

 Semantic interpretation problems

 Cube-based multi-level classification

 Relevance analysis at multi-levels

 Information-gain analysis with dimension + level

BOAT (Bootstrapped Optimistic Algorithm for Tree
Construction)

 Use a statistical technique called bootstrapping to

create several smaller samples (subsets), each fits in

memory

 Each subset is used to create a tree, resulting in several

trees

 These trees are examined and used to construct a new

tree T’

 It turns out that T’ is very close to the tree that would

be generated using the whole data set together

 Adv: requires only two scans of DB, an incremental alg.

Presentation of Classification Results

Visualization of a Decision Tree in SGI/MineSet 3.0

Interactive Visual Mining by Perception-Based

Classification (PBC)

Bayesian Classification: Why?

 A statistical classifier: performs probabilistic prediction,
i.e., predicts class membership probabilities

 Foundation: Based on Bayes’ Theorem.
 Performance: A simple Bayesian classifier, naïve Bayesian

classifier, has comparable performance with decision tree
and selected neural network classifiers

 Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is
correct — prior knowledge can be combined with observed
data

 Standard: Even when Bayesian methods are
computationally intractable, they can provide a standard
of optimal decision making against which other methods
can be measured

Bayesian Theorem: Basics

 Let X be a data sample (“evidence”): class label is unknown

 Let H be a hypothesis that X belongs to class C

 Classification is to determine P(H|X), the probability that

the hypothesis holds given the observed data sample X

 P(H) (prior probability), the initial probability

 E.g., X will buy computer, regardless of age, income, …

 P(X): probability that sample data is observed

 P(X|H) (posteriori probability), the probability of observing

the sample X, given that the hypothesis holds

 E.g., Given that X will buy computer, the prob. that X is

31..40, medium income

Bayesian Theorem

 Given training data X, posteriori probability of a

hypothesis H, P(H|X), follows the Bayes theorem

 Informally, this can be written as

 posteriori = likelihood x prior/evidence

 Predicts X belongs to C2 iff the probability P(Ci|X) is the

highest among all the P(Ck|X) for all the k classes

 Practical difficulty: require initial knowledge of many

probabilities, significant computational cost

)(
)()|()|(

X
XX

P
HPHPHP

Towards Naïve Bayesian Classifier

 Let D be a training set of tuples and their associated class
labels, and each tuple is represented by an n-D attribute
vector X = (x1, x2, …, xn)

 Suppose there are m classes C1, C2, …, Cm.

 Classification is to derive the maximum posteriori, i.e., the
maximal P(Ci|X)

 This can be derived from Bayes’ theorem

 Since P(X) is constant for all classes, only

needs to be maximized

)(

)()|(
)|(

X

X
X

P
i

CP
i

CP

i
CP

)()|()|(
i

CP
i

CP
i

CP XX

Derivation of Naïve Bayes Classifier

 A simplified assumption: attributes are conditionally
independent (i.e., no dependence relation between
attributes):

 This greatly reduces the computation cost: Only counts
the class distribution

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having
value xk for Ak divided by |Ci, D| (# of tuples of Ci in D)

 If Ak is continous-valued, P(xk|Ci) is usually computed
based on Gaussian distribution with a mean μ and
standard deviation σ

and P(xk|Ci) is

)|(...)|()|(
1

)|()|(
21

CixPCixPCixP
n

k
CixPCiP

nk

X

2

2

2

)(

2

1
),,(

x

exg

),,()|(
ii CCkxgCiP X

Naïve Bayesian Classifier: Training Dataset

Class:

C1:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data sample

X = (age <=30,

Income = medium,

Student = yes

Credit_rating = Fair)

age income studentcredit_ratinguys_compu

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Naïve Bayesian Classifier: An Example

 P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643

 P(buys_computer = “no”) = 5/14= 0.357

 Compute P(X|Ci) for each class
 P(age = “<=30” | buys_computer = “yes”) = 2/9 = 0.222
 P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6
 P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
 P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
 P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
 P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
 P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
 P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

 X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

 P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
 P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
 P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore, X belongs to class (“buys_computer = yes”)

Avoiding the 0-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be non-
zero. Otherwise, the predicted prob. will be zero

 Ex. Suppose a dataset with 1000 tuples, income=low (0), income=
medium (990), and income = high (10),

 Use Laplacian correction (or Laplacian estimator)

 Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

 The “corrected” prob. estimates are close to their “uncorrected”
counterparts

n

k
CixkPCiXP

1
)|()|(

Naïve Bayesian Classifier: Comments

 Advantages

 Easy to implement

 Good results obtained in most of the cases

 Disadvantages

 Assumption: class conditional independence, therefore
loss of accuracy

 Practically, dependencies exist among variables
 E.g., hospitals: patients: Profile: age, family history, etc.

 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

 Dependencies among these cannot be modeled by Naïve
Bayesian Classifier

 How to deal with these dependencies?

 Bayesian Belief Networks

Bayesian Belief Networks

 Bayesian belief network allows a subset of the variables

conditionally independent

 A graphical model of causal relationships

 Represents dependency among the variables

 Gives a specification of joint probability distribution

X Y

Z
P

 Nodes: random variables

 Links: dependency

 X and Y are the parents of Z, and Y is

the parent of P

 No dependency between Z and P

 Has no loops or cycles

Bayesian Belief Network: An Example

Family

History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

The conditional probability table
(CPT) for variable LungCancer:

n

i

YParents ixiPxxP n

1
))(|(),...,(1

CPT shows the conditional probability for
each possible combination of its parents

Derivation of the probability of a
particular combination of values of X,
from CPT:

Training Bayesian Networks

 Several scenarios:

 Given both the network structure and all variables
observable: learn only the CPTs

 Network structure known, some hidden variables:
gradient descent (greedy hill-climbing) method,
analogous to neural network learning

 Network structure unknown, all variables observable:
search through the model space to reconstruct
network topology

 Unknown structure, all hidden variables: No good
algorithms known for this purpose

 Ref. D. Heckerman: Bayesian networks for data mining

Using IF-THEN Rules for Classification

 Represent the knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys_computer = yes

 Rule antecedent/precondition vs. rule consequent

 Assessment of a rule: coverage and accuracy

 ncovers = # of tuples covered by R

 ncorrect = # of tuples correctly classified by R

coverage(R) = ncovers /|D| /* D: training data set */

accuracy(R) = ncorrect / ncovers

 If more than one rule is triggered, need conflict resolution

 Size ordering: assign the highest priority to the triggering rules that has

the “toughest” requirement (i.e., with the most attribute test)

 Class-based ordering: decreasing order of prevalence or misclassification
cost per class

 Rule-based ordering (decision list): rules are organized into one long

priority list, according to some measure of rule quality or by experts

age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fair excellent yes no

 Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no THEN buys_computer = no

IF age = young AND student = yes THEN buys_computer = yes

IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = yes

IF age = young AND credit_rating = fair THEN buys_computer = no

Rule Extraction from a Decision Tree

 Rules are easier to understand than large trees

 One rule is created for each path from the root

to a leaf

 Each attribute-value pair along a path forms a

conjunction: the leaf holds the class prediction

 Rules are mutually exclusive and exhaustive

Rule Extraction from the Training Data

 Sequential covering algorithm: Extracts rules directly from training data

 Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

 Rules are learned sequentially, each for a given class Ci will cover many

tuples of Ci but none (or few) of the tuples of other classes

 Steps:

 Rules are learned one at a time

 Each time a rule is learned, the tuples covered by the rules are

removed

 The process repeats on the remaining tuples unless termination

condition, e.g., when no more training examples or when the quality

of a rule returned is below a user-specified threshold

 Comp. w. decision-tree induction: learning a set of rules simultaneously

How to Learn-One-Rule?

 Star with the most general rule possible: condition = empty

 Adding new attributes by adopting a greedy depth-first strategy

 Picks the one that most improves the rule quality

 Rule-Quality measures: consider both coverage and accuracy

 Foil-gain (in FOIL & RIPPER): assesses info_gain by extending

condition

It favors rules that have high accuracy and cover many positive tuples

 Rule pruning based on an independent set of test tuples

Pos/neg are # of positive/negative tuples covered by R.

If FOIL_Prune is higher for the pruned version of R, prune R

)log
''

'
(log'_ 22

negpos

pos

negpos

pos
posGainFOIL

negpos

negpos
RPruneFOIL

)(_

 Classification:

 predicts categorical class labels

 E.g., Personal homepage classification

 xi = (x1, x2, x3, …), yi = +1 or –1

 x1 : # of a word “homepage”
 x2 : # of a word “welcome”

 Mathematically

 x X = n, y Y = {+1, –1}

 We want a function f: X Y

Classification: A Mathematical Mapping

Linear Classification

 Binary Classification
problem

 The data above the red
line belongs to class ‘x’

 The data below red line
belongs to class ‘o’

 Examples: SVM,
Perceptron, Probabilistic
Classifiers

x

x x

x

x x

x

x

x

x o o
o

o
o

o

o

o

o o

o
o

o

Discriminative Classifiers

 Advantages

 prediction accuracy is generally high
 As compared to Bayesian methods – in general

 robust, works when training examples contain errors

 fast evaluation of the learned target function
 Bayesian networks are normally slow

 Criticism

 long training time

 difficult to understand the learned function (weights)
 Bayesian networks can be used easily for pattern discovery

 not easy to incorporate domain knowledge
 Easy in the form of priors on the data or distributions

Perceptron & Winnow

• Vector: x, w

• Scalar: x, y, w

Input: {(x1, y1), …}

Output: classification function f(x)

 f(xi) > 0 for yi = +1

 f(xi) < 0 for yi = -1

f(x) => wx + b = 0

 or w1x1+w2x2+b = 0

x1

x2

• Perceptron: update W
additively

• Winnow: update W
multiplicatively

Classification by Backpropagation

 Backpropagation: A neural network learning algorithm

 Started by psychologists and neurobiologists to develop

and test computational analogues of neurons

 A neural network: A set of connected input/output units

where each connection has a weight associated with it

 During the learning phase, the network learns by

adjusting the weights so as to be able to predict the

correct class label of the input tuples

 Also referred to as connectionist learning due to the

connections between units

Neural Network as a Classifier

 Weakness
 Long training time

 Require a number of parameters typically best determined
empirically, e.g., the network topology or ̀ `structure."

 Poor interpretability: Difficult to interpret the symbolic meaning
behind the learned weights and of ̀ `hidden units" in the network

 Strength
 High tolerance to noisy data

 Ability to classify untrained patterns

 Well-suited for continuous-valued inputs and outputs

 Successful on a wide array of real-world data

 Algorithms are inherently parallel

 Techniques have recently been developed for the extraction of
rules from trained neural networks

A Neuron (= a perceptron)

 The n-dimensional input vector x is mapped into variable y by
means of the scalar product and a nonlinear function mapping

k -

f

weighted

sum
Input

vector x

output y

Activation
function

weight

vector w

w0

w1

wn

x0

x1

xn

)sign(y

ExampleFor
n

0i
kii xw

A Multi-Layer Feed-Forward Neural Network

Output layer

Input layer

Hidden layer

Output vector

Input vector: X

wij

i

jiijj OwI

jIj
e

O

1

1

))(1(jjjjj OTOOErr

jk
k

kjjj wErrOOErr)1(

ijijij OErrlww)(
jjj Errl)(

How A Multi-Layer Neural Network Works?

 The inputs to the network correspond to the attributes measured

for each training tuple

 Inputs are fed simultaneously into the units making up the input

layer

 They are then weighted and fed simultaneously to a hidden layer

 The number of hidden layers is arbitrary, although usually only one

 The weighted outputs of the last hidden layer are input to units

making up the output layer, which emits the network's prediction

 The network is feed-forward in that none of the weights cycles

back to an input unit or to an output unit of a previous layer

 From a statistical point of view, networks perform nonlinear

regression: Given enough hidden units and enough training

samples, they can closely approximate any function

Defining a Network Topology

 First decide the network topology: # of units in the

input layer, # of hidden layers (if > 1), # of units in each
hidden layer, and # of units in the output layer

 Normalizing the input values for each attribute measured in

the training tuples to [0.0—1.0]

 One input unit per domain value, each initialized to 0

 Output, if for classification and more than two classes,

one output unit per class is used

 Once a network has been trained and its accuracy is

unacceptable, repeat the training process with a different
network topology or a different set of initial weights

Backpropagation

 Iteratively process a set of training tuples & compare the network's

prediction with the actual known target value

 For each training tuple, the weights are modified to minimize the

mean squared error between the network's prediction and the

actual target value

 Modifications are made in the “backwards” direction: from the output
layer, through each hidden layer down to the first hidden layer, hence

“backpropagation”
 Steps

 Initialize weights (to small random #s) and biases in the network

 Propagate the inputs forward (by applying activation function)

 Backpropagate the error (by updating weights and biases)

 Terminating condition (when error is very small, etc.)

Backpropagation and Interpretability

 Efficiency of backpropagation: Each epoch (one interation through the

training set) takes O(|D| * w), with |D| tuples and w weights, but # of

epochs can be exponential to n, the number of inputs, in the worst

case

 Rule extraction from networks: network pruning

 Simplify the network structure by removing weighted links that

have the least effect on the trained network

 Then perform link, unit, or activation value clustering

 The set of input and activation values are studied to derive rules

describing the relationship between the input and hidden unit

layers

 Sensitivity analysis: assess the impact that a given input variable has

on a network output. The knowledge gained from this analysis can be

represented in rules

SVM—Support Vector Machines

 A new classification method for both linear and nonlinear

data

 It uses a nonlinear mapping to transform the original

training data into a higher dimension

 With the new dimension, it searches for the linear optimal

separating hyperplane (i.e., “decision boundary”)
 With an appropriate nonlinear mapping to a sufficiently

high dimension, data from two classes can always be

separated by a hyperplane

 SVM finds this hyperplane using support vectors

(“essential” training tuples) and margins (defined by the
support vectors)

SVM—History and Applications

 Vapnik and colleagues (1992)—groundwork from Vapnik

& Chervonenkis’ statistical learning theory in 1960s
 Features: training can be slow but accuracy is high owing

to their ability to model complex nonlinear decision

boundaries (margin maximization)

 Used both for classification and prediction

 Applications:

 handwritten digit recognition, object recognition,

speaker identification, benchmarking time-series

prediction tests

SVM—General Philosophy

Support Vectors

Small Margin Large Margin

SVM—Margins and Support Vectors

SVM—When Data Is Linearly Separable

m

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples
associated with the class labels yi

There are infinite lines (hyperplanes) separating the two classes but we want to
find the best one (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum
marginal hyperplane (MMH)

SVM—Linearly Separable

 A separating hyperplane can be written as

W ● X + b = 0

where W={w1, w2, …, wn} is a weight vector and b a scalar (bias)

 For 2-D it can be written as

w0 + w1 x1 + w2 x2 = 0

 The hyperplane defining the sides of the margin:

H1: w0 + w1 x1 + w2 x2 ≥ 1 for yi = +1, and

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the

sides defining the margin) are support vectors

 This becomes a constrained (convex) quadratic optimization

problem: Quadratic objective function and linear constraints

Quadratic Programming (QP) Lagrangian multipliers

Why Is SVM Effective on High Dimensional Data?

 The complexity of trained classifier is characterized by the # of

support vectors rather than the dimensionality of the data

 The support vectors are the essential or critical training examples —
they lie closest to the decision boundary (MMH)

 If all other training examples are removed and the training is

repeated, the same separating hyperplane would be found

 The number of support vectors found can be used to compute an

(upper) bound on the expected error rate of the SVM classifier, which

is independent of the data dimensionality

 Thus, an SVM with a small number of support vectors can have good

generalization, even when the dimensionality of the data is high

SVM—Linearly Inseparable

 Transform the original input data into a higher dimensional

space

 Search for a linear separating hyperplane in the new space

A1

A2

SVM—Kernel functions

 Instead of computing the dot product on the transformed data tuples,

it is mathematically equivalent to instead applying a kernel function

K(Xi, Xj) to the original data, i.e., K(Xi, Xj) = Φ(Xi) Φ(Xj)

 Typical Kernel Functions

 SVM can also be used for classifying multiple (> 2) classes and for

regression analysis (with additional user parameters)

Scaling SVM by Hierarchical Micro-Clustering

 SVM is not scalable to the number of data objects in terms of

training time and memory usage

 “Classifying Large Datasets Using SVMs with Hierarchical Clusters
Problem” by Hwanjo Yu, Jiong Yang, Jiawei Han, KDD’03

 CB-SVM (Clustering-Based SVM)

 Given limited amount of system resources (e.g., memory),

maximize the SVM performance in terms of accuracy and the

training speed

 Use micro-clustering to effectively reduce the number of points

to be considered

 At deriving support vectors, de-cluster micro-clusters near

“candidate vector” to ensure high classification accuracy

CB-SVM: Clustering-Based SVM

 Training data sets may not even fit in memory

 Read the data set once (minimizing disk access)

 Construct a statistical summary of the data (i.e., hierarchical

clusters) given a limited amount of memory

 The statistical summary maximizes the benefit of learning SVM

 The summary plays a role in indexing SVMs

 Essence of Micro-clustering (Hierarchical indexing structure)

 Use micro-cluster hierarchical indexing structure

 provide finer samples closer to the boundary and coarser

samples farther from the boundary

 Selective de-clustering to ensure high accuracy

CF-Tree: Hierarchical Micro-cluster

CB-SVM Algorithm: Outline

 Construct two CF-trees from positive and negative data
sets independently

 Need one scan of the data set

 Train an SVM from the centroids of the root entries

 De-cluster the entries near the boundary into the next
level

 The children entries de-clustered from the parent
entries are accumulated into the training set with the
non-declustered parent entries

 Train an SVM again from the centroids of the entries in
the training set

 Repeat until nothing is accumulated

Selective Declustering

 CF tree is a suitable base structure for selective declustering

 De-cluster only the cluster Ei such that

 Di – Ri < Ds, where Di is the distance from the boundary to

the center point of Ei and Ri is the radius of Ei

 Decluster only the cluster whose subclusters have

possibilities to be the support cluster of the boundary

 “Support cluster”: The cluster whose centroid is a
support vector

Experiment on Synthetic Dataset

Experiment on a Large Data Set

SVM vs. Neural Network

 SVM

 Relatively new concept

 Deterministic algorithm

 Nice Generalization

properties

 Hard to learn – learned

in batch mode using

quadratic programming

techniques

 Using kernels can learn

very complex functions

 Neural Network

 Relatively old

 Nondeterministic
algorithm

 Generalizes well but
doesn’t have strong
mathematical foundation

 Can easily be learned in
incremental fashion

 To learn complex
functions—use multilayer
perceptron (not that
trivial)

Associative Classification

 Associative classification

 Association rules are generated and analyzed for use in classification

 Search for strong associations between frequent patterns

(conjunctions of attribute-value pairs) and class labels

 Classification: Based on evaluating a set of rules in the form of

P1 ^ p2 … ^ pl “Aclass = C” (conf, sup)
 Why effective?

 It explores highly confident associations among multiple attributes

and may overcome some constraints introduced by decision-tree

induction, which considers only one attribute at a time

 In many studies, associative classification has been found to be more

accurate than some traditional classification methods, such as C4.5

Typical Associative Classification Methods

 CBA

 Mine association possible rules in the form of

 Cond-set (a set of attribute-value pairs) class label

 Build classifier: Organize rules according to decreasing precedence

based on confidence and then support

 CMAR

 Classification: Statistical analysis on multiple rules

 CPAR

 Generation of predictive rules (FOIL-like analysis)

 High efficiency, accuracy similar to CMAR

 RCBT

 Explore high-dimensional classification, using top-k rule groups

 Achieve high classification accuracy and high run-time efficiency

A Closer Look at CMAR

 CMAR

 Efficiency: Uses an enhanced FP-tree that maintains the distribution of
class labels among tuples satisfying each frequent itemset

 Rule pruning whenever a rule is inserted into the tree

 Given two rules, R1 and R2, if the antecedent of R1 is more general
than that of R2 and conf(R1) ≥ conf(R2), then R2 is pruned

 Prunes rules for which the rule antecedent and class are not
positively correlated, based on a χ2 test of statistical significance

 Classification based on generated/pruned rules

 If only one rule satisfies tuple X, assign the class label of the rule

 If a rule set S satisfies X, CMAR

 divides S into groups according to class labels

 uses a weighted χ2 measure to find the strongest group of rules,
based on the statistical correlation of rules within a group

 assigns X the class label of the strongest group

Associative Classification May Achieve High Accuracy
and Efficiency (Cong et al. SIGMOD05)

Lazy vs. Eager Learning

 Lazy vs. eager learning

 Lazy learning (e.g., instance-based learning): Simply
stores training data (or only minor processing) and
waits until it is given a test tuple

 Eager learning (the above discussed methods): Given a
set of training set, constructs a classification model
before receiving new (e.g., test) data to classify

 Lazy: less time in training but more time in predicting

 Accuracy

 Lazy method effectively uses a richer hypothesis space
since it uses many local linear functions to form its
implicit global approximation to the target function

 Eager: must commit to a single hypothesis that covers
the entire instance space

Lazy Learner: Instance-Based Methods

 Instance-based learning:

 Store training examples and delay the processing
(“lazy evaluation”) until a new instance must be
classified

 Typical approaches

 k-nearest neighbor approach

 Instances represented as points in a Euclidean
space.

 Locally weighted regression

 Constructs local approximation

 Case-based reasoning

 Uses symbolic representations and knowledge-
based inference

The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space

 The nearest neighbor are defined in terms of
Euclidean distance, dist(X1, X2)

 Target function could be discrete- or real- valued

 For discrete-valued, k-NN returns the most common
value among the k training examples nearest to xq

 Vonoroi diagram: the decision surface induced by 1-
NN for a typical set of training examples

 .

_
+

_ xq

+

_ _
+

_

_

+

.

.
.

. .

Discussion on the k-NN Algorithm

 k-NN for real-valued prediction for a given unknown tuple

 Returns the mean values of the k nearest neighbors

 Distance-weighted nearest neighbor algorithm

 Weight the contribution of each of the k neighbors

according to their distance to the query xq

 Give greater weight to closer neighbors

 Robust to noisy data by averaging k-nearest neighbors

 Curse of dimensionality: distance between neighbors could

be dominated by irrelevant attributes

 To overcome it, axes stretch or elimination of the least

relevant attributes

2),(

1

i
xqxd

w

Case-Based Reasoning (CBR)

 CBR: Uses a database of problem solutions to solve new problems

 Store symbolic description (tuples or cases)—not points in a Euclidean

space

 Applications: Customer-service (product-related diagnosis), legal ruling

 Methodology

 Instances represented by rich symbolic descriptions (e.g., function

graphs)

 Search for similar cases, multiple retrieved cases may be combined

 Tight coupling between case retrieval, knowledge-based reasoning,

and problem solving

 Challenges

 Find a good similarity metric

 Indexing based on syntactic similarity measure, and when failure,

backtracking, and adapting to additional cases

Genetic Algorithms (GA)

 Genetic Algorithm: based on an analogy to biological evolution

 An initial population is created consisting of randomly generated rules

 Each rule is represented by a string of bits

 E.g., if A1 and ¬A2 then C2 can be encoded as 100

 If an attribute has k > 2 values, k bits can be used

 Based on the notion of survival of the fittest, a new population is

formed to consist of the fittest rules and their offsprings

 The fitness of a rule is represented by its classification accuracy on a

set of training examples

 Offsprings are generated by crossover and mutation

 The process continues until a population P evolves when each rule in P
satisfies a prespecified threshold

 Slow but easily parallelizable

Rough Set Approach

 Rough sets are used to approximately or “roughly” define
equivalent classes

 A rough set for a given class C is approximated by two sets: a lower

approximation (certain to be in C) and an upper approximation

(cannot be described as not belonging to C)

 Finding the minimal subsets (reducts) of attributes for feature

reduction is NP-hard but a discernibility matrix (which stores the

differences between attribute values for each pair of data tuples) is

used to reduce the computation intensity

Fuzzy Set
Approaches

 Fuzzy logic uses truth values between 0.0 and 1.0 to
represent the degree of membership (such as using
fuzzy membership graph)

 Attribute values are converted to fuzzy values

 e.g., income is mapped into the discrete categories
{low, medium, high} with fuzzy values calculated

 For a given new sample, more than one fuzzy value may
apply

 Each applicable rule contributes a vote for membership
in the categories

 Typically, the truth values for each predicted category
are summed, and these sums are combined

What Is Prediction?

 (Numerical) prediction is similar to classification

 construct a model

 use model to predict continuous or ordered value for a given input

 Prediction is different from classification

 Classification refers to predict categorical class label

 Prediction models continuous-valued functions

 Major method for prediction: regression

 model the relationship between one or more independent or
predictor variables and a dependent or response variable

 Regression analysis

 Linear and multiple regression

 Non-linear regression

 Other regression methods: generalized linear model, Poisson
regression, log-linear models, regression trees

Linear Regression

 Linear regression: involves a response variable y and a single

predictor variable x

y = w0 + w1 x

where w0 (y-intercept) and w1 (slope) are regression coefficients

 Method of least squares: estimates the best-fitting straight line

 Multiple linear regression: involves more than one predictor variable

 Training data is of the form (X1, y1), (X2, y2),…, (X|D|, y|D|)

 Ex. For 2-D data, we may have: y = w0 + w1 x1+ w2 x2

 Solvable by extension of least square method or using SAS, S-Plus

 Many nonlinear functions can be transformed into the above

||

1

2

||

1

)(

))((

1 D

i

i

D

i

ii

xx

yyxx

w xwyw
10

 Some nonlinear models can be modeled by a polynomial
function

 A polynomial regression model can be transformed into
linear regression model. For example,

y = w0 + w1 x + w2 x
2 + w3 x

3

convertible to linear with new variables: x2 = x2, x3= x3

y = w0 + w1 x + w2 x2 + w3 x3

 Other functions, such as power function, can also be
transformed to linear model

 Some models are intractable nonlinear (e.g., sum of
exponential terms)

 possible to obtain least square estimates through
extensive calculation on more complex formulae

Nonlinear Regression

 Generalized linear model:

 Foundation on which linear regression can be applied to modeling

categorical response variables

 Variance of y is a function of the mean value of y, not a constant

 Logistic regression: models the prob. of some event occurring as a

linear function of a set of predictor variables

 Poisson regression: models the data that exhibit a Poisson

distribution

 Log-linear models: (for categorical data)

 Approximate discrete multidimensional prob. distributions

 Also useful for data compression and smoothing

 Regression trees and model trees

 Trees to predict continuous values rather than class labels

Other Regression-Based Models

Regression Trees and Model Trees

 Regression tree: proposed in CART system

 CART: Classification And Regression Trees

 Each leaf stores a continuous-valued prediction

 It is the average value of the predicted attribute for the training

tuples that reach the leaf

 Model tree: proposed by Quinlan (1992)

 Each leaf holds a regression model—a multivariate linear equation

for the predicted attribute

 A more general case than regression tree

 Regression and model trees tend to be more accurate than linear

regression when the data are not represented well by a simple linear

model

 Predictive modeling: Predict data values or construct
generalized linear models based on the database data

 One can only predict value ranges or category distributions

 Method outline:

 Minimal generalization

 Attribute relevance analysis

 Generalized linear model construction

 Prediction

 Determine the major factors which influence the prediction

 Data relevance analysis: uncertainty measurement,
entropy analysis, expert judgement, etc.

 Multi-level prediction: drill-down and roll-up analysis

Predictive Modeling in Multidimensional Databases

Prediction: Numerical Data

Prediction: Categorical Data

Classifier Accuracy Measures

 Accuracy of a classifier M, acc(M): percentage of test set tuples that are
correctly classified by the model M

 Error rate (misclassification rate) of M = 1 – acc(M)

 Given m classes, CMi,j, an entry in a confusion matrix, indicates #
of tuples in class i that are labeled by the classifier as class j

 Alternative accuracy measures (e.g., for cancer diagnosis)

sensitivity = t-pos/pos /* true positive recognition rate */

specificity = t-neg/neg /* true negative recognition rate */

precision = t-pos/(t-pos + f-pos)

accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg)

 This model can also be used for cost-benefit analysis

classes buy_computer = yes buy_computer = no total recognition(%)

buy_computer = yes 6954 46 7000 99.34

buy_computer = no 412 2588 3000 86.27

total 7366 2634 10000 95.52

C1 C2

C1 True positive False negative

C2 False positive True negative

Predictor Error Measures

 Measure predictor accuracy: measure how far off the predicted value is

from the actual known value

 Loss function: measures the error betw. yi and the predicted value yi’
 Absolute error: | yi – yi’|
 Squared error: (yi – yi’)2

 Test error (generalization error): the average loss over the test set

 Mean absolute error: Mean squared error:

 Relative absolute error: Relative squared error:

The mean squared-error exaggerates the presence of outliers

Popularly use (square) root mean-square error, similarly, root relative

squared error

d

yy
d

i

ii

1

|'|

d

yy
d

i

ii

1

2)'(

d

i

i

d

i

ii

yy

yy

1

1

||

|'|

d

i

i

d

i

ii

yy

yy

1

2

1

2

)(

)'(

Evaluating the Accuracy of a Classifier or
Predictor (I)

 Holdout method

 Given data is randomly partitioned into two independent sets

 Training set (e.g., 2/3) for model construction

 Test set (e.g., 1/3) for accuracy estimation

 Random sampling: a variation of holdout

 Repeat holdout k times, accuracy = avg. of the accuracies
obtained

 Cross-validation (k-fold, where k = 10 is most popular)

 Randomly partition the data into k mutually exclusive subsets,
each approximately equal size

 At i-th iteration, use Di as test set and others as training set

 Leave-one-out: k folds where k = # of tuples, for small sized data

 Stratified cross-validation: folds are stratified so that class dist. in
each fold is approx. the same as that in the initial data

Evaluating the Accuracy of a Classifier or
Predictor (II)

 Bootstrap

 Works well with small data sets

 Samples the given training tuples uniformly with replacement

 i.e., each time a tuple is selected, it is equally likely to be

selected again and re-added to the training set

 Several boostrap methods, and a common one is .632 boostrap

 Suppose we are given a data set of d tuples. The data set is sampled d

times, with replacement, resulting in a training set of d samples. The data

tuples that did not make it into the training set end up forming the test set.

About 63.2% of the original data will end up in the bootstrap, and the

remaining 36.8% will form the test set (since (1 – 1/d)d ≈ e-1 = 0.368)

 Repeat the sampling procedue k times, overall accuracy of the

model:

))(368.0)(632.0()(_

1
_ settraini

k

i

settesti MaccMaccMacc

Ensemble Methods: Increasing the Accuracy

 Ensemble methods

 Use a combination of models to increase accuracy

 Combine a series of k learned models, M1, M2, …, Mk,
with the aim of creating an improved model M*

 Popular ensemble methods

 Bagging: averaging the prediction over a collection of
classifiers

 Boosting: weighted vote with a collection of classifiers

 Ensemble: combining a set of heterogeneous classifiers

Bagging: Boostrap Aggregation

 Analogy: Diagnosis based on multiple doctors’ majority vote

 Training

 Given a set D of d tuples, at each iteration i, a training set Di of d
tuples is sampled with replacement from D (i.e., boostrap)

 A classifier model Mi is learned for each training set Di

 Classification: classify an unknown sample X

 Each classifier Mi returns its class prediction

 The bagged classifier M* counts the votes and assigns the class
with the most votes to X

 Prediction: can be applied to the prediction of continuous values by
taking the average value of each prediction for a given test tuple

 Accuracy

 Often significant better than a single classifier derived from D

 For noise data: not considerably worse, more robust

 Proved improved accuracy in prediction

Boosting

 Analogy: Consult several doctors, based on a combination of weighted

diagnoses—weight assigned based on the previous diagnosis accuracy

 How boosting works?

 Weights are assigned to each training tuple

 A series of k classifiers is iteratively learned

 After a classifier Mi is learned, the weights are updated to allow the

subsequent classifier, Mi+1, to pay more attention to the training

tuples that were misclassified by Mi

 The final M* combines the votes of each individual classifier, where

the weight of each classifier's vote is a function of its accuracy

 The boosting algorithm can be extended for the prediction of

continuous values

 Comparing with bagging: boosting tends to achieve greater accuracy,

but it also risks overfitting the model to misclassified data

Adaboost (Freund and Schapire, 1997)

 Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)

 Initially, all the weights of tuples are set the same (1/d)

 Generate k classifiers in k rounds. At round i,

 Tuples from D are sampled (with replacement) to form a
training set Di of the same size

 Each tuple’s chance of being selected is based on its weight
 A classification model Mi is derived from Di

 Its error rate is calculated using Di as a test set

 If a tuple is misclssified, its weight is increased, o.w. it is
decreased

 Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier
Mi error rate is the sum of the weights of the misclassified tuples:

 The weight of classifier Mi’s vote is
)(

)(1
log

i

i

Merror

Merror

d

j

ji errwMerror)()(jX

Model Selection: ROC Curves

 ROC (Receiver Operating Characteristics)

curves: for visual comparison of

classification models

 Originated from signal detection theory

 Shows the trade-off between the true

positive rate and the false positive rate

 The area under the ROC curve is a

measure of the accuracy of the model

 Rank the test tuples in decreasing order:

the one that is most likely to belong to the

positive class appears at the top of the list

 The closer to the diagonal line (i.e., the

closer the area is to 0.5), the less accurate

is the model

 Vertical axis represents
the true positive rate

 Horizontal axis rep. the
false positive rate

 The plot also shows a
diagonal line

 A model with perfect
accuracy will have an
area of 1.0

Rameswara Reddy.K.V

Asst.Professor

CSE Department

Patterns and Models
 Pattern

 Model

 Visualizing a pattern

 Database

 Record

 Field

 Predictor

 Prediction

 value

Where are models used?
 Selection

 Acquisition

 Retention

 Ext ension

Right Model
 It could always be used to make the correct prediction

 It would not degrade over time

 It could be used with the data at hand not require any
extraordinary data collection

 It would be simpler and smaller than the data it was
used to model.

Sampling
 It is a statistical analysis technique used to select,

manipulate and analyze a representative subset of data
points to identify patterns and trends in the larger data
set being examined.

 Random sampling

 Experimental design

 Round robin

 Stratified

 Cluster

 * Avoiding bias

Data Mining
 Data mining is the process of finding anomalies,

patterns and correlations within large data sets to
predict outcomes. Using a broad range of techniques,
you can use this information to increase revenues, cut
costs, improve customer relationships, reduce risks
and more.

Applications
-Data mining is highly useful in the following domains

 Market Analysis and Management

 Corporate Analysis & Risk Management

 Fraud Detection

KDD

 Data Cleaning − In this step, the noise and inconsistent data is
removed.

 Data Integration − In this step, multiple data sources are
combined.

 Data Selection − In this step, data relevant to the analysis task
are retrieved from the database.

 Data Transformation − In this step, data is transformed or
consolidated into forms appropriate for mining by performing
summary or aggregation operations.

 Data Mining − In this step, intelligent methods are applied in
order to extract data patterns.

 Pattern Evaluation − In this step, data patterns are evaluated.
 Knowledge Presentation − In this step, knowledge is

represented.

 There are two forms of data analysis that can be used
for extracting models describing important classes or
to predict future data trends. These two forms are as
follows −

 Classification

 Prediction

 Classification models predict categorical class labels;
and prediction models predict continuous valued
functions.

Decision Tree

 A decision tree is a structure that includes a root node,

branches, and leaf nodes. Each internal node denotes
a test on an attribute, each branch denotes the
outcome of a test, and each leaf node holds a class
label. The topmost node in the tree is the root node.

 Algorithm : Generate_decision_tree
 Input: Data partition, D, which is a set of training tuples and their associated class labels.
 attribute_list, the set of candidate attributes.
 Attribute selection method, a procedure to determine the splitting criterion that best

partitions that the data tuples into individual classes. This criterion includes a
splitting_attribute and either a splitting point or splitting subset.

 Output: A Decision Tree
 Method create a node N;
 if tuples in D are all of the same class, C then return N as leaf node labeled with class C;
 if attribute_list is empty then return N as leaf node with labeled with majority class in D;

// majority voting
 apply attribute_selection_method(D, attribute_list) to find the best splitting_criterion;
 label node N with splitting_criterion;
 if splitting_attribute is discrete-valued and multiway splits allowed then // not restricted

to binary trees
 attribute_list -= splitting attribute; // remove splitting attribute for each outcome j of

splitting criterion // partition the tuples and grow subtrees for each partition
 let Dj be the set of data tuples in D satisfying outcome j; // a partition
 if Dj is empty then
 attach a leaf labeled with the majority class in D to node N;
 else attach the node returned by Generate decision tree(Dj, attribute list) to node N;
 end for
 return N;

Attribute selection measures
 Information gain

 Gain ratio

 Gini index

