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What is Data Warehousing 
 

  Data Warehousing is an architectural construct of 

information systems that provides users with current and historical 

decision support information that is hard to access or present in 

traditional operational data stores 

 

The need for data warehousing 
 

•Business perspective  
 –In order to survive and succeed in today’s highly competitive 

  global  environment 

•Decisions need to be made quickly and correctly 

•The amount of data doubles every 18 months, which affects response 

  time and the sheer ability to comprehend its content 

•Rapid changes 



Business Problem Definition 

  Providing the organizations with a sustainable competitive  

Advantage 

 Customer retention 

 Sales and customer service 

 Marketing 

 Risk assessment and fraud detection 

 



Business problem and data warehousing 

Classified into  

Retrospective analysis: 

      Focuses on the issues of past and present events. 

 

Predictive analysis: 

     Focuses on certain events or behavior based on historical 
information 

 Further classified into  

 Classification: 

  Used to classify database records into a number of predefined 
classes based on certain criteria. 

 Clustering:  

  Used to segment a database into subsets or clusters based on a set 
of attributes 



Association 

  It identify affinities among the collection as reflected in the 
examined records. 

Sequencing 

  This techniques helps identify patterns over time, thus allowing , 
for example, an analysis of customers purchase during separate visits. 

 

Operational and Informational Data Store 

Operational Data 

  Focusing on transactional function such as bank card withdrawals 
and deposits 

•Detailed 

•Updateable 

•Reflects current 
 



     ODS                    Data warehouse 

 

volatile            nonvolatile 

every current data                    current and historical data  

detailed data                           precalculated summaries 

 



Informational Data 

  Informational data, is organized around subjects such as 

customer, vendor, and product. What is the total sales today?. 

 Focusing on providing answers to problems posed by decision 

makers 

•Summarized 

•Nonupdateable 

 

Operational data store. 

  An operational data store (ODS) is an architectural concept to 

support day-to-day operational decision support and constrains current 

value data propagated from operational applications. 

 



  A data warehouse is a subject-oriented, integrated, nonvolatile, 

time-variant collection of data in support of management's decisions. 

[WH Inmon] 

Subject Oriented 

  Data warehouses are designed to help to analyze the data. For 

example, to learn more about your company’s sales data, building a 
warehouse that concentrates on sales  

Integrated 

  The data in the data warehouse is loaded from different sources 

that store the data in different formats and focus on different aspects of 

the subject. The data has to be checked, cleansed and transformed into 

a unified format to allow easy and fast access. 



Nonvolatile 

  Nonvolatile means that, once entered into the warehouse, data 

should not change. After inserting data in the data warehouse it is 

neither changed nor removed. Data warehouse requires two operations 

in data accessing 

 Initial loading of data 

 Access of data 

Time Variant 

  In order to discover trends in business, analysts need large 

amounts of data. A data warehouse’s focus on change over time is 
what is meant by the term time variant. 

  Provides information from historical perspective  



Seven data warehouse components 

 Data sourcing, cleanup, transformation, and migration tools 

 Metadata repository 

 Warehouse/database technology 

 Data marts 

 Data query, reporting, analysis, and mining tools 

 Data warehouse administration and management  

 Information delivery system 

 

Data Warehouse Architecture 





Data Warehousing Components 

  Operational data and processing is completely separate form data 

warehouse processing.  

Data Warehouse Database  

  It is an important concept (Marked as 2 in the diagram) in the 

Warehouse environment.  

  In additional to transaction operation such as ad hoc query 

processing, and the need for flexible user view creation including 

aggregation, multiple joins, and drill-down.  

 Parallel relational database designs that require a parallel computing 

platform. 

 Using new index structures to speed up a traditional RDBMS. 

 Multidimensional database (MDDBS) that are based on proprietary 

database technology or  implemented using already familiar RDBMS. 



Sourcing, Acquisition, Cleaning, and Transformation tools 

  To perform all of the conversations, summarizations, key 
changes, structural changes, and condensations needed to transform 
disparate data into information  

 Removing unwanted data from operational database 

 Converting to common data names and definitions 

 Calculating summarizes and derived data. 

 Establishing default for missing data. 

 Accommodating source data definition changes. 

 Database heterogeneity. DBMS are very different in data model, 
data access language, data navigation, operation, concurrency, 
integrity, recovery etc,. 

 Data heterogeneity. This is the difference in the way data is defined 
and used in different models, different attributes for the same entity. 



Metadata 

data about data  

Used for building, maintaining, and using the data warehouse  

Classified into  

Technical metadata  

  About warehouse data for use by warehouse designers and 

administrators when carrying out warehouse development and 

management tasks  

 Information about data sources 

 Transformation, descriptions, i.e., the mapping methods from 

operational databases into the warehouse and algorithms used to 

convert, enhance or transform data. 

 Warehouse objects and data structure definitions for data targets. 

 The rules used to perform data cleanup and data enhancement. 



 Data mapping operations when capturing data from source systems 

and applying to the target warehouse database. 

 Access authorization, backup history, archive history, information 

delivery history, data acquition history, data access etc., 

Business metadata  

Gives perspective of the information stored in the data warehouse  

 Subject areas and information object type, including queries, reports, 

images, video, and / or audio clips. 

 Internet home pages. 

 Other information to support all data warehouse components. 

 Data warehouse operational information e.g., data history, ownership, 

extract, audit trail, usage data. 



  Metadata management is provided via a metadata repository and 
accompanying software.  

  The important functional components of the metadata repository 
is the information directory. This directory helps integrate, maintain, 
and view the contents of the data warehousing system  

Access Tools  

  Front-end tools, ad hoc request, regular reports, and custom 
applications are the primary delivery of the analysis.  

  Alerts, which let a user know when a certain event has occurred 

 The tools divided into five main groups. 

 Data query and reporting tools  

 Application development tools  

 Executive information system (EIS) tools  

 On-line analytical processing tools  

 Data mining tools  

  



Query and reporting tools  

This category can be further divided into two groups. 

 Reporting tools  

 Managed query tools  

  Reporting tools can be divided into production reporting tools 
and desktop report writers. 

 Production reporting tools will let companies generate regular 
operational reports or support high-volume batch jobs. 

 Report writers, on the other hand, are inexpensive desktop tools 
designed for end users. 

  Managed query tools shield end users from the complexities of 
SAL and database structures by inserting a metalayer between users 
and the database  

Applications 

Applications developed using a language for the users 



OLAP 

Based on the concepts of multidimensional database  

Data mining  

  To discovery meaningful new correlations, patterns, and trends 
by digging into (mining) large amount of data stored in warehouse 
using artificial-intelligence (AI) and statistical and mathematical 
techniques  

Discover knowledge. The goal of knowledge discovery is to determine 
the following things. 

 Segmentation 

 Classification 

 Association 

 Preferencing 

 



Visualize data. Prior to any analysis, the goal is to “humanize” the mass 
of data they must deal with and find a clever way to display the data. 

Correct data. While consolidating massive database may enterprise find 
that the data is not complete and invariably contains erroneous and 
contradictory information. Data mining techniques can help identify 
and correct problems in the most consistent way possible. 

Data visualization 

Presenting the output of all the previously mentioned tools  

Colors, shapes, 3-D images, sound, and virtual reality  

Data Marts  

  Data store that is subsidiary to data warehouse  

  It is partition of data that is created for the use of dedicated group 
of users  

  Placed on the data warehouse database rather than placing it as 
separate store of data.  



  In most instance, the data mart is physically separate store of data 

and is normally resident on separate database server. 

1. Extremely urgent user requirements. 

2. The absence of a budget for a full dwh strategy. 

3. The absence of a sponsor for an enterprise wide decision support 

strategy. 

4. The decentralization of business units. 

5. The attraction of easy to use tools and a mind sized project. 



  

Data Warehouse administration and Management 

 Managing data warehouse includes 

 Security and priority management 

 Monitoring updates form multiple sources 

 Data quality checks 

 Managing and updating metadata 

 Auditing and reporting data warehouse usage and status 

 Replicating, sub setting, and distributing data 

 Backup and recover 

 Data warehouse storage management 



Information delivery system 

  The information delivery system distributes warehouse stored 

data and other information objects to other data warehouse and end-

user products such as spread sheets and local databases.  

  Delivery of information may be based on time of day, or a 

completion of an external event.  



Business considerations  

Return on Investment 

Approach  

  The information scope of the data warehouse varies with the 

business requirements, business priorities, and magnitude of the 

problem  

 Two data warehouses  

  Marketing  

  Personnel  

 The top-down approach  

  Building an enterprise data warehouse with subset data marts. 

 The bottom-up approach 

  Resulted in developing individual data marts, which are then 

integrated into the enterprise data warehouse. 

 

 

Building a Data Warehouse 



Organizational issues  

  A data warehouse implementation is not truly a technological 

issue; rather, it should be more concerned with identifying and 

establishing information requirements, the data sources fulfill these 

requirements, and timeliness.  

Design considerations  

  A data Warehouse’s design point is to consolidate from multiple, 
often heterogeneous sources into a query database. The main factors 

include 

 Heterogeneity of data sources, which affects data conversion, quality, 

timeliness 

 Use of historical data, which implies that data may be “old”. 
 Tendency of databases to grow very large 

 



Data content 

  A data warehouse may contain details data, but the data is 
cleaned up and transformed to fit the warehouse model, and certain 
transactional attributes of the data are filtered out. 

  The content and structure of the data warehouse are reflected in 
its data model. The data model is the template that describes how 
information will be organized within the integrated warehouse 
framework.  

Metadata 

  A data warehouse design should ensure that there is mechanism 
that populates and maintains the metadata repository, and that all 
access paths to the data warehouse have metadata as an entry point.  

Data distribution 

  One of the challenges when designing a data warehouse is to 
know how the data should be divided across multiple servers and 
which users should get access to which types of data.  



  The data placement and distribution design should 

consider several options, including data distribution by 

subject area, location, or time.  

Tools 

  Each tool takes a slightly different approach to data warehousing 

and often maintain its own version of the metadata which is placed 

in a tool-specific, proprietary metadata repository.  

  The designers of the tool have to make sure that all selected tools 

are compatible with the given data warehouse environment and with 

each other.  

 



Performance considerations 

  Rapid query processing is highly desired feature that should be 
designed into the data warehouse.  

  Design warehouse database to avoid the majority of the most 
expensive operations such as multitable search and joins  

Nine decisions in  the design of data warehouse 

1. Choosing the subject matter. 

2. Deciding what a fact table represents. 

3. Identifying and confirming the dimensions.  

4. Choosing the facts. 

5. Storing precalculations in the fact table. 

6. Rounding out the dimension tables. 

7. Choosing the duration of the database. 

8. The need to track slowly changing dimensions. 

9. Deciding the query priorities and the query modes  

 



Technical Considerations 

 The hardware platform that would house the data warehouse 

 The database management system that supports the warehouse 

database. 

 The communications infrastructure that connects the warehouse, 

data marts, operational systems, and end users. 

 The hardware platform and software to support the metadata 

repository. 

 The systems management framework that enables centralized 

management and administration. of the entire environment 

Hardware platforms   

  Data warehouse server is its capacity for handling the volumes of 

data required by decision support applications, some of which may 

require a significant amount of historical data.  



  This capacity requirement can be quite large  

  The data warehouse residing on the mainframe is best suited for 

situations in which large amounts of data 

  The data warehouse server has to be able to support large data 

Volumes and complex query processing. 

Balanced approach.  

  An important design point when selecting a scalable computing 

platform is the right balance between all computing components  

Data warehouse and DBMS specialization 

  The requirements for the data warehouse DBMS are 

performance, throughput, and scalability because the database large 

in size and the need to process complex ad hoc queries in a 

relatively in short time. 

  The database that have been optimized specifically for data 

warehousing.   



Communications infrastructure 

  Communications networks have to be expanded, and new 
hardware and software may have to be purchased to meet out the 
cost and efforts associated with bringing access to corporate data 
directly to the desktop.  

Implementation Considerations 

  Data warehouse implementation requires the integration of many 
products within a data warehouse. 

 The steps needed to build a data warehouse are as follows. 

 Collect and analyze business requirements. 

 Create a data model and a physical design for the data warehouse. 

 Define data warehouse. 

 Choose the database technology and platform for the warehouse. 

 Extract the data from the operational databases, transform it, clean it 
up, and load it into the database.  

  



 Choose the database access and reporting tools. 

 Choose database connectivity software. 

 Choose data analysis and presentation software. 

 Update the data warehouse. 

Access tools  

  Suit of tools are needed to handle all possible data warehouse 

access needs and the selection of tools based on definition of deferent 

types of access to the data  

 Simple tabular form reporting. 

 Ranking. 

 Multivariable analysis. 

 Time series analysis. 

 Data visualization, graphing, charting and pivoting. 

 Complex textual search. 



 Statistical analysis. 

 Artificial intelligence techniques for testing of hypothesis, trend 

discovery, definition and validation of data cluster and segments. 

 Information mapping 

 Ad hoc user-specified queries 

 Predefined repeatable queries 

 Interactive drill-down reporting and analysis. 

 Complex queries with multitable joins, multilevel sub queries, and 

sophisticated search criteria. 

Data extraction, cleanup, transformation and migration 

  Data extraction decides the ability to transform, consolidate, 

integrate, and repair the data should be considered  



 The ability to identify data in the data source environments that can be 
read by the conversion tool is important 

 Support for flat files, indexed files 

 The capability to merge data from multiple data stores is required in 
many installations. 

 The specification interface to indicate the data to be extracted and 
conversion criteria is important. 

 The ability to read information from data dictionaries or import 
information from repository products is desired. 

 The code generated by the tool should be completely maintainable 
from within the development environment. 

 Selective data extraction of both data elements and records enables 
users to extract only the required data. 

 



 A field-level data examination for the transformation of data into 
information is needed. 

 The ability to perform data-type and character-set translation is a 
requirement when moving data between incompatible systems. 

 The capability to create summarization, aggregation, and derivation 
records and fields in very important 

 The data  warehouse database management should be able to 
perform the load directly form the tool, using the native API 
available with the RDBMS. 

 Vendor stability and support for the product are items that must be 
carefully evaluated. 

Data placement strategies 

  As a data warehouse grows, there at least two options for data 
placement. One is to put some of the data in the data warehouse into 
another storage media e.g., WORM, RAID, or photo-optical 
technology.  

 



  The second option is to distribute the data in the data warehouse 

across multiple servers  

Data replication  

  Data that is relevant to a particular workgroup in a localized 

database can be a more affordable solution than data warehousing  

  Replication technology creates copies of databases on a periodic 

bases, so that data entry and data analysis can be performed 

separately 

Metadata 

  Metadata is the roadmap to the information stored in the 

warehouse  

  The metadata has to be available to all warehouse users in order 

to guide them as they use the warehouse.  



User sophistication levels 

Casual users  

Power users.  

Experts  

Integrated Solutions 

  A number of vendors participated in data warehousing by  

providing a suit of services and products that go beyond one particular  

Component of the data warehouse. 
Digital Equipment Corp. Digital has combined the data modeling,  extraction and cleansing capabilities of 

Prism Warehouse  Manager with the copy management and data replication capabilities of  Digital’s 
ACCESSWORKS family of database access servers in providing users with the ability to build and 

use information warehouse  

Hewlett-Packard. Hewlett-Packard’s client/server based HP open warehouse comprises multiple 
components, including a data management architecture, the HP-UX operating system HP 

9000 computers, warehouse management tools, and the HP information Access query  

          tool 

 



 IBM. The IBM information warehouse framework consists of an architecture; data management tools; 

OS/2, AIX, and MVS operating systems; hardware platforms, including mainframes and servers; and a 

relational DBMS (DB2). 

 Sequent. Sequent computer systems Inc.’s DecisionPoint Program is a decision support program for 
the delivery of data warehouses dedicated to on-line complex query processing (OLCP). Using 

graphical interfaces users query the data warehouse by pointing and clicking on the warehouse data 

item they want to analyze. Query results are placed on the program’s clipboard for pasting onto a 
variety of desktop applications, or they can be saved on to a disk. 

Benefits of Data Warehousing 

Data warehouse usage includes 

 Locating the right information 

 Presentation of Information (reports, graphs). 

 Testing of hypothesis 

 Sharing and the analysis  



Tangible benefits 

 Product inventory turnover is improved 

 Cost of product introduction are decreased with improved selection of 

target markets. 

 More cost-effective decision making is enabled by increased quality 

and flexibility of market analysis available through multilevel data 

structures, which may range from detailed to highly summarized. 

 Enhanced asset and liability management means that a data warehouse 

can provide a “big” picture of  enterprise wide purchasing and 
inventory patterns. 

 



Intangible benefits 

The intangible benefits include. 

 Improved productivity, by keeping all required data in a single 

location and eliminating the redundant processing 

 Reduced redundant processing. 

 Enhance customer relations through improved knowledge of 

individual requirement and trends. 

 Enabling business process reengineering. 

 



Mapping the Warehouse to a Multiprocessor Architecture 

Relational Database Technology for Data Warehouse  

The Data warehouse environment needs 

 Speed up  

 Scale-p  

  Parallel hardware architectures, parallel operating systems and 

parallel database management systems will provide the requirement of 

warehouse environment.  

Types of parallelism  

Interquery parallelism  

 Threads (or process) handle multiple requests at the same time. 

Intraquery parallelism  

 scan, join, sort, and aggregation operations are executed concurrently 

in parallel.  



Intraquery parallelism can be done in either of two ways  

Horizontal parallelism  

  Database is partitioned across multiple disks, and parallel 

processing occurs within a specific task that is performed concurrently 

on different sets of data.  

Vertical parallelism  

  An output from on tasks (e.g., scan) becomes are input into 

another task (e.g., join) as soon as records become available.  

Data Partitioning  

  Spreads data from database tables across multiple disks so that 

I/O operations such as read and write can be performed in parallel. 

Random partitioning 

   It includes data striping across multiple disks on a single server. 

Another options for random partitioning is round-robin partitioning. In which each 

new record is placed on the next assigned to the database.   



Case 1 

Response 

Time 

Case 2 

Serial 

RDBM

S 

Horizontal 

Parallelism 

(Data Partitioning) 

Case 3 

Vertical Parallelism 

(Query 

Decomposition) 

Case 4 

Intelligent partitioning 

 DBMS knows where a specific record is located and does not 

waste time searching for it across all disks.  

Hash partitioning. A hash algorithm is used to calculate the partition 

umber (hash value) based on the value of  the portioning key for each 

row. 



 Key range partitioning. Rows are placed and located in the partitions 

according to the value of the partitioning key (all rows with the key 

value form A to K are in partition 1, L to T are in partition 2 etc.). 

 Schema partitioning. an entire table is placed on one disk, another 

table is placed on a different disk, etc. This is useful for small 

reference tables that are more effectively used when replicated in each 

partition rather than spread across partitions. 

 User-defined partitioning. This is a partitioning method that allows a 

table to be partitioned on the basis of a user-defined expression. 

Database Architecture for Parallel Processing  

Shared-memory architecture- SMP (Symmetric Multiprocessors)   

  Multiple database components executing SQL statements 

communicate with each other by exchanging messages and data via the 

shared memory. 



  Scalability can be achieved through process-based multitasking 

or thread-based multitasking.  
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Shared-disk architecture 

  The entire database shared between RDBMS servers, each of 

which is running on a node of a distributed memory system.  

  Each RDBMS server can read, write, update, and delete records 

from the same shared database   

   Implemented by using distribute lock manager (DLM)  

Disadvantage.  

  All nodes are reading and updating the same data, the RDBMS 

and its DLM will have to spend a lot of resources synchronizing  

     multiple buffer pools.  

  It may have to handle significant message traffic in a highly 

utilized REBMS environment.  

 



Advantages.  

  It reduce performance bottlenecks resulting from data skew (an 

uneven distribution of data), and can significantly increases system 

availability. 

  It eliminates the memory access bottleneck typical of large SMP 

systems, and helps reduce DBMS dependency on data partitioning. 
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 Figure 4.3 Distributed-memory shared-disk architecture 



Shared-nothing architecture 

  Each processor has its own memory and disk, and communicates 

with other processors by exchanging messages and data over the 

interconnection network. 
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Disadvantages.  

It is most difficult to implement.  

It requires a new programming paradigm  



Combined architecture 

  Combined hardware architecture could be a cluster of SMP nodes  

  combined parallel DBMS architecture should support intersever 

parallelism of distributed memory MPPs and intraserver parallelism of 

SMP nodes.  

Parallel RDBMS features  

Scope and techniques of parallel DBMS operations  

Optimizer implementation  

Application transparency  

The parallel environment  

DBMS management tool  



Alternative Technologies  

  Number of vendors are working on other solutions improving 

performance in data warehousing environments.  

 Advanced database indexing products 

 Specialized RDBMSs designed specifically for data warehousing. 

 Multidimensional databases 

  SYBASE IO is an example of a product that uses a bitmapped 

index structure of the data stored in the SYBASE DBMS.  

 



Parallel DBMS Vendors  

Oracle 

  Oracle supports parallel database processing with its add-on 

oracle parallel server option(OPS) and parallel query option(PQO) 

Architecture.  

Virtual shared-disc capability.  

Process-based approach  

Facilitate the inter query parallelism  

PQO supports parallel operations such as index build, database load, 

backup, and recovery. 

Data partitioning  

 It supports random striping of data across multiple disks.  

Oracle supports dynamic data repartitioning  



Parallel operations  

 Generates a parallel plan 

 The oracle PQO query coordinator breaks the query into sub queries  

 Parallelize the creation of indexes, database load, backup, and 

recovery  

 PQO supports both horizontal and vertical parallelism   

Informix  

Architecture.  

  Support shared-memory, shared-disk, and shared-nothing models. 

 It is thread based architecture. 

Data partitioning.  

  Round-robin, schema, charts, key range,  and user-defined 

partitioning methods . Both data and index can be partitioned  



Parallel Operations.   

  Executes queries in parallel.  

IBM 

  Client/Server database product-DB2 parallel Edition  

Architecture.  

  DB2 PE is a shared-nothing architecture in which all data is 

partitioned across processor nodes.  

  Each node is aware of the other nodes and how the data is 

partitioned  

Data partitioning.  

  Allow a table to span multiple nodes.  

  The master system catalog for each database is stored on one 

node and cached on every other node.  



Parallel operations.  

All database operations are fully parallelized   

Sybase 

  Sybase has implemented its parallel DBMS functionality in a 

parallel product called DYBASE MPP.  

Architecture.  

  It is a shared-nothing systems that partitions data across multiple 

SQL servers and supports both function shipping and data repartitions. 

  Open server application that  operates on top of existing SQL 

servers.  

  All the knowledge about the environment, data partitions, and 

parallel query execution is maintained by SYBASE MPP software.   



SYBASE MPP consists of specialized servers. 

 Data server the smaller executable unit of parallelism that consists of 

SQL server, split server (performs joins across nodes), and control 

server (coordination of execution and communication) 

 DBA server handles optimization, DDL statements, security and global 

systems catalog. 

 Administrative server a graphical user interface for managing 

SYBASE MPP. 

Data partitioning.  

supports hash, key range, and schema partitioning, indexes partitioning. 

Parallel operations.  

  All SQL statements and utilities in parallel across SQL servers 

Microsoft  

SQL server architecture is shared-everything design optimized for SMP 

systems. SQL server is tightly integrated with the NT operating 

systems threads   



DBMS Schemas for Decision Support 
Data Layout for best access  

Multidimensional Data Model 

Star Schema  

Two groups: facts and dimension  

Facts are the core data element being analyzed  

 e.g.. items sold  

dimensions are attributes about the facts  

 e.g. date of purchase  

  The star schema is designed to overcome this limitation in the 

two-dimensional relational model. 

DBA Viewpoint  

  The fact table contains raw facts.  The facts are typically additive 

and are accessed via dimensions.  





  The dimension tables contain a non-compound primary key and 

are heavily indexed.  

  Dimension tables appear in constraints and GROUP BY Clauses, 

and are joined to the fact tables using foreign key references.  

  Once the star schema database is defined and loaded, the queries 

that answer simple and complex questions.  

Potential Performance Problems with star schemas  

  The star schema suffers the following performance problems. 

Indexing  

Multipart key presents some problems in the star schema model.  

(day->week-> month-> quarter-> year ) 

 It requires multiple metadata definition( one for each component) to 

design a single  table.  



 Since the fact table must carry all key components as part of its 
primary key, addition or deletion of levels in the hierarchy will require 
physical modification of the affected table, which is time-consuming 
processed that limits flexibility. 

 Carrying all the segments of the compound dimensional key in the fact 
table increases the size of the index, thus impacting both performance 
and scalability. 

Level Indicator  

  The dimension table design includes a level of hierarchy indicator 
for every record.  

  Every query that is retrieving detail records from a table that 
stores details and aggregates must use this indicator as an additional 
constraint to obtain a correct result.  

  The user is not and aware of the level indicator, or its values are 
in correct, the otherwise valid query may result in a totally invalid 
answer. 



  Alternative to using the level indicator is the snowflake schema  

  Aggregate fact tables are created separately from detail tables  

  Snowflake schema contains separate fact tables for each level of 

aggregation  

Other problems with the star schema design 

Pairwise Join Problem  

  5 tables require joining first two tables, the result of this join with 

third table and so on.  

  The intermediate result of every join operation is used to join 

with the next table.  

  Selecting the best order of pairwise joins rarely can be solve in a 

reasonable amount of time.  

  Five-table query has 5!=120 combinations  



  This problem is so serious that some databases will not run a 

query that tries to join too many tables.  

STARjoin and STARindex  

  A STARjoin is a high-speed, single-pass, parallelizable multitable 
join and is introduced by Red Brick’s RDBMS.  

  STARindexes to accelerate the join performance  

  STARindexes are created in one or more foreign key columns of 

a fact table.  

  Traditional multicolumn references a single table where 
as the STARindex can reference multiple tables  

  With multicolumn indexes, if a query’s WHERE Clause 
does not contain on all the columns in the composite index, 
the index cannot be fully used unless the specified columns 
are a leading subset. 



  The STARjoin using STARindex could efficiently join the 

dimension tables to the fact table without penalty of generating the full 

Cartesian product.  

  The STARjoin algorithm is  able to generate a Cartesian product 

in regions where these are rows of interest and bypass generating 

Cartesian products over region where these are no rows. 

  10 to 20 times faster than traditional pairwise join techniques  

Bit mapped Indexing  

SYBASE IQ  

Overview.  

  Data is loaded into SYBASE IQ, it converts all data into a series 

of bitmaps; which are them highly compressed and stored in  disk.  

  SYBASE IQ indexes do not point to data stored elsewhere all 

data is contained in the index structure. 



Data Cardinality. 

   Bitmap indexes are used to queries against low-cardinality data-
that is data in which the total number of potential values is relatively 
low. 

  For example, state code data cardinality is 50 and gender 
cardinality is only 2(male and female).  

  For low cardinality data, each distinct value has its own bitmap 
index consisting of a bit for every row in the table.   

  The bit map index representation is a 10000 bit long vector which 
has its bits turned ON (value of 1) for every record that satisfies 
“gender=”M” condition. 

  Bitmap indexes can become cumbersome and even unsuitable for 

high cardinality data where the range of potential value is high.  

  SYBASE IQ high cardinality index starts at 1000 distinct values. 



Emp-Id Gender Last Name First Name Address 

104345 M Karthik Ramasamy 10, North street 

104567 M Visu Pandian 12, Pallavan street 

104788 F Mala Prathap 123, Koil street 

1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 

Record 1 

Record 2 
Record  N 



Index Types.  

  The SYBASE IQ provides five index techniques.  One is a 

default index called the Fast projection index and the other is either a 

low-or high-cardinality index. 

Performance.  

  SYBASE IQ technology achieves very good performance in ad 

hoc queries for several reasons. 

 Bitwise Technology. This allows rapid response to queries containing 

various data type, supports data aggregation and grouping. 

 Compression.  SYBASE IQ uses sophisticated algorithm to compress 

data into bitmapping SYBASE IQ can hold more data in memory 

minimizing expensive I/O operations. 
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 Optimized memory-based processing.  SYBASE IQ caches data 
columns in memory according to the nature of user’s queries. 

 Columnwise processing. SYBASE IQ scans columns not rows.   For 
the low selectivity queries (those that select only a few attributes from 
a multi attribute row) the technique of scanning by columns drastically 
reduces the amount of data the engine has to search. 

 Low Overhead. As an engine optimized for decision support, 
SYBASE IQ does not carry an overhead associated with traditional 
OLTP designed RDBMS performance. 

 Large Block I/O. Block size high in SYBASE IQ can be tuned from 
512 bytes to 64 bytes, so that the system can read as much information 
as necessary in a single I/O. 

 Operating-system-level  parallelism. SYBASE IQ breaks low-level 
operations like sorts, bitmap manipulation, load and I/O into non 
blocking operation’s that the operating systems can schedule 
independently and in parallel. 

 Prejoin and ad hoc join Capabilities. SYBASE IQ allows users to 
take advantage of know join relationships between tables by defining 
them in advance and building indexes between tables. 

 



 Shortcoming of Indexing.  

   Some of the tradeoffs of the SYBASE IQ are as follows  

 No Updates. SYBASE IQ does not support updates, and 

therefore is unsuitable  

 Lack of core RDBMS features. SYBASE IQ does not support 

all the backup and recovery and also does not support stored 

procedures, data integrity checker, data replication, complex 

data types. 

 Less advantage for planned queries. SYBASE IQ 

advantages are most obvious when running ad hoc queries 

 High memory Usage. SYBASE IQ takes advantage of 

available system memory to avoid expensive I/O operations 



Column Local Storage 

  Performance in the data warehouse environment can be achieved 

by storing data in memory in column wise instead to store one row at a 

time and each row can be viewed and accessed as single record. 
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Complex Data types 

  The warehouse environment support for datatypes of complex 

like text, image, full-motion video, some and large objects called 

binary large object (BLOBs) other than simple such as alphanumeric.  



Data Extraction, cleanup, and Transformation Tools 

Tools Requirements  

   The tools that enable sourcing of the proper data contents 

and formats from operational and external data stores into the data 

warehouse to perform a number of important tasks that include 

 Data transformation from one format to another on the basis of 

possible differences between the source and the target platform. 

 Data transformation and calculation based on the application of the 

business rules that force certain transformations. Examples are 

calculating age from the date of birth, or replacing a possible numeric 

gender code with a more meaningful “male” and “female” and data 
cleanup, repair, and enrichment, which may include corrections to the 

address field based on the value of the postal zip code. 



 Data conversations and integration, which may include combining 

several source records into a single record to be loaded into the 

warehouse. 

 Metadata synchronization and management, which includes storing 

and/or updating metadata definitions about source data files, 

transformation actions, loading formats, and events etc., 

 When implementing a data warehouse, several selection criteria that 

affect the tools ability to transform, consolidate, integrate, and repair 

the data should be considered. 

 The ability to identify data in the source environments that can be read 

by the conversion tool is important. 

 Support for flat files, indexed files  

 The capability to merge data from multiple data stores  

 The ability to read information from data dictionaries or important information 

from repository products is desired  



 The code generated by the tool should be completely maintainable from within 

the development environment. 

 Selective data extraction of both data elements and records enables uses to extract 

only the required data. 

 A field-level data examination for the transformation of data into information is 

needed. 

 The ability to perform data-type and character-set translation is a requirement 

when moving data between incompatible systems. 

 The capability to create summarization, aggregation, and derivation records and 

fields is very important. 

 The data warehouse database management system should be able to perform the 

load directly from the tool, using the native API available with the RDBMS. 

 Vendor stability and support for the product are items that must be carefully 

evaluated. 



Vendor Approaches  

  The integrated solutions can fall into one of the categories 

described below 

  Code generators  

  Database data replication tools  

  Rule-driven dynamic transformation engines capture data from 

source systems at user-defined intervals, transform the data, and then 

send and load the results into a target environment, typically a data 

mart  

Access to Legacy Data  

  Many organizations develop middleware solutions that can 

manage the interaction between the new applications and growing data 

warehouses on one hand and back-end legacy systems in the other 

hand. 



  A three architecture that defines how applications are partitioned 

to meet both near-term integration and long-term migration objectives.  

 The data layer provides data access and transaction services for 

management of corporate data assets. 

 The process layer provides services to manage automation and support 

for current business process. 

 The user layer manages user interaction with process and /or data layer 

services. 

Vendor Solutions  

Prism Solutions  

  Provides a comprehensive solution of data warehousing by 

mapping source data to a target database management system to be 

used as warehouse.  



  Warehouse Manager generates code to extract and integrate data, create and 

manage metadata, and build a subject-oriented, historical base.  

  Prism Warehouse Manager can extract data from multiple source environments 

including DB2, IDMS, IMS, VSAM, RMS and sequential files under UNIX or MVS. 

Target databases include ORACLE SYBASE, and INFIRMIX  

SAS Institute  

  SAS tools to serve all data warehousing functions. 

   Its data repository function can act to build the informational database.  

  SAS Data Access Engine serve as extraction tools to combine common 

variables, transform data representation forms for consistency, consolidate redundant 

data, and use business rules to produce computed values in the warehouse.  

  SAS engines can work with hierarchical and relational databases and 

sequential files  



Carleton Corporation’s PASSPORT and MetaCenter.  
PASSPORT.  

  PASSPORT is sophisticated metadata-driven, data-mapping and data-

migration facility. 

   PASSPORT Workbench runs as a client on various PC platforms in the three-

tiered environment, including OS/2 and Windows. 

  The product consists of two components.  

  The first, which is mainframe-based, collects the file, record, or table layouts 

for the required inputs and outputs and converts them to the Passport Data Language 

(PDL). 



Overall, PASSPORT offers 

 A metadata dictionary at the core of the process. 

 Robust data conversion, migration, analysis, and auditing facilities. 

 The PASSPORT Workbench that enables project development on a workstations, 

with uploading of the generated application to the source data platform. 

 Native interfaces to existing data files and RDBMS, helping users to lever-age 

existing legacy applications and data. 

 A comprehensive fourth-generation specification language and the full power of 

COBOL. 

The MetaCenter.  

  The MetaCenter, developed by Carleton Corporation in partnership with 

Intellidex System, Inc., is and integrated tool suite that is designed to put users in 

control of the data warehouse.  

 



It is used to manage  

 Data extraction 

 Data transformation 

 Metadata capture 

 Metadata browsing 

 Data mart subscription 

 Warehouse control center functionality 

 Event control and notification  

Vality Corporation  

  Vality  Corporation’s Integrity data reengineering tool is used to investigate, 
standardize, transform, and integrate data from multiple operational systems and 

external sources.  



 Data audits 

 Data warehouse and decision support systems 

 Customer information files and house holding applications 

 Client/server business applications such as SAP, Oracle, and Hogan 

 System consolidations 

 Rewrites of existing operational systems 

Transformation Engines 

Informatica  

  Informatica’s product, the PowerMart suite, captures technical and business 
metadata on the back-end that can be integrated with the metadata in front-end 

partner’s products. PowerMart creates and maintains the metadata repository 
automatically. 

 



It consists of the following components  

  PowerMart Designer is made up of three integrated modules- Source 

Analyzer, Warehouse Designer, and Transformation Designer  

  PowerMart Server runs on a UNIX or Windows NT platform.  

  The Information Server Manager is responsible for configuring, scheduling, 

and monitoring the Information Server.  

  The Information Repository is the metadata integration hub of the Informatica 

PowerMart Suite.  

  Informatica PowerCapture allows a data mart to be incrementally refreshed 

with changes occurring in the operational syste, either as they occur or on a 

scheduled basis. 

Constellar  

  The Constellar Hub is designed to handle the movement and transformation of 

data for both data migration and data distribution in an operational system, and for 

capturing operational data for loading a data warehouse. 

 



  Constellar employs a hub and spoke architecture to manage the flow of data 

between source and target systems.  

  Hubs that perform data transformation based on rules defined and developed 

using Migration Manager  

  Each of the spokes represents a data path between a transformation hub and a 

data source or target.  

  A hub and its associated sources and targets can be installed on the same 

machine, or may run on separate networked computers.  



Metadata 

The metadata contains  

 The location and description of warehouse system and data components 

 Names, definition, structure, and content of the warehouse and end-user views. 

 Identification of authoritative data sources. 

 Integration and transformation rules used to populate the data warehouse; these 

include the mapping method from operational databases into the warehouse, and 

algorithms used to convert, enhance, or transform data 

 Integration and transforms rules used to deliver data to end-user analytical tools. 

 Subscription information, which includes a history of warehouse updates, 

refreshments, snapshots, versions, ownership authorizations, and extract audit trail 

 Security authorizations, access control lists, etc. 

 Metadata is used for building, maintaining, managing, and using he data warehouse. 



Metadata Interchange Initiative  

  A Metadata standard developed for metadata interchange format and its 
support mechanism.  

  The goal of the standard include 

 Creating a vendor-independent, industry-defined and application programming 
interface (API) for metadata. 

 Enabling users to control and mange the access and manipulation of metadata in their 
unique environments through the use of interchange-standard compliant tools 

 Allowing users to build tool configurations that meet their needs and to incrementally 
adjust those configurations as necessary to add or subtract tools without impact on 
the interchange standards environment. 

 Enabling individual tools to satisfy their specific metadata access requirements freely 
and easily within the context of an interchange model 

 Defining a clean, simple interchange implementation infrastructure that will facilitate 
compliance and speed up adoption by minimizing the amount of modification 
required to existing tools to achieve and maintain interchange standards compliance. 

 Creating a process and procedures not only for establishing and maintaining the 
interchange standards specification but also for extending and updating it over time 
as required by evolving industry and user needs. 

 



Metadata Interchange Standard framework. 

   Implementation of the interchange standard metadata model must assume that the 

metadata itself may be stored in any type of storage facility or format; relational tables, ASCII 

files, fixed-format or customized-format repositories, and so on. 

The components of the Metadata Interchange Standard Framework are 

 The Standard Metadata Model, which refers to the ASCII file format used to 

represent the metadata that is being exchanged. 

 The Standard Access Framework, which describes the minimum number of API 

functions a vendor must support.  

 Tool Profile, which is provided by each tool vendor. The Tool Profile is a file that 

describes what aspects of the interchange standard metamodel a particular tool 

supports. 

 The User Configuration, which is a file describing the legal interchange paths for 

metadata in the user’s environment. This file allows customers to constrain the flow 
of metadata from tool to tool in their specific environments. 

  This framework defines the means by which various tool vendors will enable 

metadata interchange. 
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Metadata Repository  

  The metadata itself is housed in and managed by the metadata repository. 

  Metadata repository management software can be used to map the source data 

to the target database, generate code for data transformations, integrate and transform 

the data, and control moving data to the warehouse.  

  Metadata defines the contents and location of data in the warehouse, 

relationships between the operational databases and the data warehouse, and the 

business views of the warehouse data that are accessible by the end-user tools.   

  A data warehouse design should ensure that there is a mechanism that 

populates and maintains the metadata repository, and that all access paths to the data 

warehouse have metadata as an entry point. 



Metadata Management 

  Metadata define all data elements and their attributes, data sources and timing, 

and the rules that govern data use and data transformations.  

  The metadata also has to be available to all warehouse users in order to guide 

them as they use the warehouse.  

  Awell-thought-through strategy for collecting, maintaining, and distributing 

metadata is needed for a successful data warehouse implementation. 



Metadata Trends  

  The process of integrating external and internal data into the 

warehouse faces a number of challenges  

 Inconsistent data formats 

 Missing or invalid data 

 Different level of aggregation 

 Semantic inconsistency (e.g., different codes may mean different things from 

different suppliers of data) 

 Unknown or questionable data quality and timeliness 

 



Reporting and Query tools and Applications 
Five categories of tools 

•Reporting 
•Managed Query 
•Executive information systems 
•On-line analytical processing 
•Data mining 
 Reporting tools 
    Production  reporting tools 

           Generate regular operational reports 
            Include third-generation languages such as COBOL, specialized fourth-
generation languages such as Information builders. 
    Report writers 

            For end users 
            E.g.. Segate Crystal report 
            Having graphical interfaces. 
            Pull groups of data from a variety of data sources and integrate them in a 
single report. 
 
 



 Managed query tools 

   Shield the end users from the complexities of SQL and database by inserting a 
metalayer between users and the databases. 

   Supports point-and-click creation of SQL. 

   Three tiered architecture to improve scalability. 

 Executive information system tools 

    EIS tools used to build customized, graphical decision support application . 

    E.g. Pilot Software, Inc’s  Lightship, Platinum Technology’s Forest and Trees. 
    Building packaged applications that address functions, such as sales, 

budgeting, and marketing. 

 OLAP tools 

    An intuitive way to view corporate data. 

    Aggregate data along common business subjects or dimension and allow to 
navigate through the hierarchies and dimensions with the click of a mouse 
button. 

     Drill down, across, or up levels in each dimension or pivot and swap out 
dimensions to change their view of the data. 



 E.g.  Cognos’ PowerPlay, Brio Technology, Inc’s BrioQuery. 
 Data mining tools 

    Statistical and AI algorithms to analyze  the correlation of variables in the data 
and interesting patterns and relationships to investigate. 

    E.g. IBM’s Intelligent Miner, DataMind Corp’s DataMind. 
 The Need for Applications 

    The complexity of the questions grows, the tools may become inefficient. 

    The various access types to the data stored in a data warehouse 

 Simple tabular form reporting 

 Ad hoc user-specified queries 

 Predefined repeatable queries 

 Complex queries with multitable joins, multilevel subqueries 

 Ranking 

 Multivariable analysis 

 Time series analysis 

 Data visualization, graphing, charting, and pivoting 

 Complex textual search 

 Statistical analysis 



 AI techniques for testing of hypothesis, trends discovery 

 Information mapping 

 Interactive drill-down reporting and analysis 

   Three distinct type of reporting 

  1. Creation and viewing of standard reports – Routine delivery of report 

  2. Definition and creation of ad hoc reports – managers and business 
users to quickly create their own reports and get quick answers  

   3. Data exploration – Users can easily “surf” through data without a 
preset path. 

   The above said reasons may require applications often take the 
form of custom-developed screens and reports that retrieve frequently used data 
and format it in a predefined standardized way. 

 Cognos Impromptu 

  Overview 

   Product from Cognos Corporation. 

   An enterprise solution for interactive database reporting. 



   Object oriented architecture, control and administrative 
consistency across all users and reports 

   Graphical user interface 

   Ease of deployment 

   Low cost 

   Support both single user and multiusers 

     The Impromptu Information Catalog. 

   A LAN based repository of business knowledge and data access 
rules. 

   Protects the database from repeated queries and unnecessary 
processing. Presents the database in a way that reflects how the business is 
organized, 

 And uses the terminology of the business. 

   Enables business-relevant reporting through business rules 

    Object-oriented architecture 

   Inheritance-based administration and distributed catalogs. 

   Changes to business rules, permission sets, and query activities 
cascade automatically throughout the enterprise. 

 



  Management functionality through the use of governers 

  Governor can control 

 Query activity 

 Processing location 

 Database connections 

 Reporting permissions 

 User profiles 

 Client/server balancing 

 Database transactions 

 Security by value 

 Field and table security 

  Reporting 

   Easy build and run their own reports 

   Contains predefined templates for mailing, labels, invoices, sales 
reports, and custom automation. 



  Provides special reporting options 

  Picklists and prompts 

   creating report for which users can select from lists of values 
called picklist. 

   Reports containing too many values for a single variable, 
Impromptu offers prompt. 

   It allows to supply value at run time 

  Custom templates  

   Users can apply their data to the placeholders contained in the 
template 

   Templates standard logic, calculations,  and layout complete the 
report automatically in the user’s choice of format 

  Exception reporting 

   Ability to report high light values that lie outside accepted 
ranges. 

   Three types of exception report 

   Conditional filters. Only those values that are outside defined 
threshold, or define ranges to organize data for quick evaluation. E.g. Sales 
under Rs.10000. 



   Conditional highlighting. Formatting data on the basis of data values. 
      E.g. Sales over Rs. 10000 always appear blue. 
   Conditional display. Display report object under certain conditions. 
   E.g. Sales graph only if the sales are below a predefined value. 
  Interactive reporting 

   Unifying query and reporting in a single interface. 
  Frames.  
   Frames are building blocks that may be used to produce reports. 
   Frames formatted with fonts, border, colors, shading, etc., 
   Frames combined to create complex reports 
   Templates can be created with multiframes. 
    List frames 
    Form frames 
    Cross-tab frames 
    Chart frames 
    Text frames 
    Picture frames 
    OLE frames 
  Impromptu’s design is tightly integrated with the Microsoft Windows 

environment.  
    



  Impromptu Request Server. 

   sending query process to the server. 

   Request server will execute the request, generating the result on 
the server. 

   After the producing the result it notifies the client, so that client 
to do other things. 

   supports data maintained in ORACLE 7.x and SYBASE 

  Supported database 

   Support ORACLE, SQL server, SYBASE SQL server, MDI 
DB2 Gateway, Informix, dBase, Paradox. 

 Applications 

  Organizations build applications for several reasons 

 A legacy DSS is still being used, and the reporting facilities appear adequate 

 An organization has made a large investment in a particular application 

 A new tool may require an additional investment, software, and the 
infrastructure 

 A particular reporting requirement may be too complicated for an available 
reporting tools to handle 



 PowerBuilder 

 Object-oriented applications, including encapsulation, polymorphism, 
inheritance and GUI objects. 

 Once object created and tested and it can be reused by other applications 

 Ability to interface with  a wide variety of DBMS. 

  Object orientation 

   Supports many object-oriented features 

 Inheritance 

 Data abstraction 

 Encapsulation 

 Polymorphism 

Windows facilities 

  PowerBuilder supports Windows facilities 

 DDE 

 OLE 

 MDI  

 



  Features 

   PowerBuilder windows and controls can contain program scripts 
that execute in response to different events that can be detected by PowerBuilder 

   PowerBuilder controls are buttons, radio buttons, bush buttons, list 
box, check boxes, combo boxes, text fields menus, edit fields, and pictures 

   Supports events such as clicked, double clicked 

   Client/server application can be constructed using PowerBuilder 
painters 

 Application Painter. 

   First identifies basic details and components of new or existing 
applications 

   Application icon displays a hierarchical view of the application 
structure 

   All levels can be expanded or contracted with a click of the right 
mouse button. 

   Creating and naming new applications, selection of an application 
icon, setting of the library search path, and defining of default text characteristics. 

   Supports all events 

    



   It also used to run or debug the application 

 Window Painter 

   Used to create and maintain PowerBuilder window objects. 

   Supports creation main application window, pop-up, dialog, and 
MDI. 

   Operations are performed by drag and drop and click operations. 

   PowerScript Painter – allows to select from a list of events and 
global and local variables. 

   Object browser – displays attributes of any object, data type and 
structures. 

 DataWindows Painter 

   Dynamic objects that provide access to databases and other data 
sources such as ASCII files. 

   Applications use this to connect to multiple databases and files, as 
well as import and export data in a variety of formats such as dBase, Excel, Lotus. 

   It also supports stored procedure. 

   It allows developers to select a number of presentation styles from 
the list of tabular, grid, label, and free form.  



   It also allows a user-specified number of rows to be displayed. 

   QueryPainter – used to generate of SQL statements that can be 
stored in PowerBuilder libraries. 

   Thus, using Application Painter, Window Painter, and 
DataWindows Painter facilites, a simple client/server application can be 
constructed literally in minutes. 

   A rich set of SQL functions is supported, including 
CONNECT/DISCONNECT, DECLARE, OPEN, and CLOSE cursor, FETCH, 
and COMMIT/ROLLBACK. 

  PowerBuilder supplies server other painter. 

 Database Painter – used to pick table from the list box and examine and 
edit join conditions and predicates, key fields, extended attribute, display 
formats and other database attributes. 

 Structure Painter – Creation and modification of data structures and 
groups of related data elements 

 Preference Painter – Configuration tool that is used to examine and 
modify configuration parameters. For the PowerBuilder environment 

 Menu Painter – Creates menus  



 Function Painter – Assists developers in creating functions calls and 
parameters using combo boxes. 

 Library Painter - Manages the library in which the application 
components reside. 

 User object Painter – Allows Developers to create custom controls. 

 Help Painter – Built-in help system 

 Forté 

  It is three tiered architecture – Client, Application business logic, and 
Data server. 

  Rapid  development, testing, and deployment of distributed client/server 
applications across any enterprise.  

  Application partitioning. 

   Forté allows to build logical application that is independent of 
the underlying environment. 

   Developers build an application as if it were to run entirely on a 
single machine. 

   Forté automatically splits apart the application to run across the 
clients and servers that constitute the deployment environment. 



   Support tunable application partitioning 

  Shared-application services 

   With Forté , developers build collection of application 
components 

   The components can include client functionality such as data 
presentation and other desktop processing. 

   Shared-application services form the basis for a three-tiered 
application architecture 

  Business events 

   Automate the notification of significant business occurrences so 
that appropriate actions can be taken immediately by users.  

   Forté detects the event, and sends notification to all the 
application components that have expressed interest in that event. 

 It supports three functional components 

 Application Development Facility (ADF) 

   Distributed object computing framework 

   To define user interfaces and application logic 

   Includes GUI designer and Transactional object-oriented 
language (TOOL) 

 



 System Generation Facility (SGF) 

   Assists developers in partitioning the application, generating 
executables for distribution. 

 Distributed Execution Facility (DEF) 

   Tools for managing applications at runtime, including system 
administration support, a distributed object manager to handle communications 
between applications partitions, and a performance monitor. 

 Web and Java integration 

   Integration with Java 

   ActiveX and ActiveX server support 

   Forté servers can be called from OLE 

   Support for the ability to call Forté Application servers from 
C++ modules 

   An option to generate and compile C++ code 

 Portability and supported platforms 

   Forté provides transparent portability across the most common 
client/server platforms for both development and depolyment. 

 



   Data General AViiON, Digital Alpha, Open VMS, UNIX, HP 
9000, IBM RS/6000, Sun SPARC, and Window NT. Desktop GUI support 
includes Macintosh, Motif, and Windows. 

 Information Builder 

   The products from Information builder  

    Catcus and FOCUS 

  Cactus 

   Client/server environment 

   create, test and deploy business applications spanning the 
Internet 

   Three-tired environment and application of any size and scope. 

   It builds highly reusable components 

   Object-based visual programming environment 

   Access to ActiveX , VX, and OLE controls. 

               Web-enabled access 

    Application development for the Web with no prior 
knowledge of HTML. 

    The developer can focus on the business problem rather 
than the underlying technology. 

 



  Components and features 

 Cactus Workbench – the front-end interface that provides access to the 
tool suite via iconic toolbars, push buttons, and menus. 

 Application Manager – in integrated application repository that manages 
the application development 

 Partition Manager 

 Object browser 

 Maintain – the proprietary language of cactus 

 File painter – used to build the database access objects 

 Application packager – used at deployment 

 EDA/Client – “message layer” for tier-to-tier communications. 

 Cactus Servers 

 Cactus OCX 

  Focus Fusion 

   For multidimensional database technology for OLAP and data 
warehousing. 

 



 FOCUS Fusion provides 

 Fast query and reporting 

  Its advanced indexing, parallel queryn and rollup facilities 

 Comprehensive, graphics-based administration facilities 

  Database applications easy to build 

 Integrated copy management facilities 

  Automatic data refresh from any source into Fusion 

 Open access  via industry-standard protocols 

  Through ANSI SQL, ODBC, and HTTP  

 



On-Line Analytical Processing (OLAP) 

 Need for OLAP 

• Market analysis and financial forecasting requires a multidimensional schema 
• Required to process large numbers of records from very large data sets. 
• The multidimensional nature is the key driver for OLAP 
• Relational database and SQL have some limitations  
  E.g.. Full table scan, multiple join, aggregations and sorting and 

computing this require the resources may not available all the time 
• RDBMS weakness in analyzing Time Series and complex mathematical 

functions 
• RDBMS suffer response time and SQL funcitionality 
• OLAP is a contiuous, iterative, and interactive process. 

 E.g. Sales person performance affect monthly revenue numbers 
 All these reasons make the need for OLAP 

 



 Multidimensional Data Model 

• Business problems are multidimensional nature 

 E.g. 

  How much revenue did the new product generate?  

     How much revenue did the new product generate by month, in north 
division, by sales office, relative to the previous version – a five dimensional 
query 

 

• Hence Multidimensional data model viewed as cube 

• The cube can be converted into table by dimensions with other values like sales 
numbers, unit price 

• The response time of the multidimensional query depends on how many cells 
have to be added on the fly 

• The number of dimensions increases, the number of cells in the table increases 
exponentially. 

• The solution is to Build an efficient multidimensional database is to 
preaggregate all logical subtotals and totals along all dimensions 

   



 Dimensions are hierarchical in nature 

   E.g. Time dimension – years, quarters, months, weeks, and days 

           Region – country, state, city etc. 

           drill-down – from annual sales to weekly sales and so on. 

  properly handling sparse data 

   not every cell has a meaning across all dimensions  

   cells having duplicate data 

  The multidimensional database to skip empty or repetitive cells can 
greatly reduce the size of cube and the amount of processing 

• Dimensional hierarchy, sparse data management, and preaggregation are keys, 
they reduce the size of the database 
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Example of Star Schema 
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Example of Snowflake Schema 
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A Concept Hierarchy: Dimension (location) 
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Multidimensional Data 

 Sales volume as a function of product, month, and region 
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A Sample Data Cube 
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Cuboids Corresponding to the Cube 
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 Categorization of  OLAP tools 

  MLOP 

• Specialized data structures used for organize, navigate, and analyze data in an 
aggregated form 

• Tight coupling with the application layer and presentation layer. 

• Recently MLOP vendors provide APIs for OLAP operations. 

• Data structures use array technology and, improved storage techniques to 
minimize the disk space requirements through sparse data management. 

• Excellent performance when the data is utilized as designed. 

• Some products treat time as a special dimension for time series analysis and 
other products provide strong analytical capabilities 

• Applications requiring iterative and comprehensive time series analysis. 

• Several challenges face users considering the implementation of applications 
with MLOP products. 



 Limitation in the ability of data structures to support multiple subject 
areas of  data and the detail data required by many analysis applications 

 Limitation in the way data can be navigated and analyzed, because the 
data is structured around the navigation and analysis requirements 

known at the data structures built. 
 MLOP products require a different set of skills and tools for the database 

administrator of support 

   With specialized multidimensional data storage and RDBMS 
technology, providing user with a facility that tightly “couples” the data 
multidimensional data structures (MDDs) with data maintained in and 
RDBMS.  

   The MDDSs to dynamically obtain detail data maintained in an 
RDBMS. 

   For example sales to be stored and maintained in a persistent 
structure, will reduce the overhead of performing calculations and building 
aggregation during application initilization. 



Typical OLAP Operations 

 Roll up (drill-up): summarize data 

 by climbing up hierarchy or by dimension reduction 

 Drill down (roll down): reverse of roll-up 

 from higher level summary to lower level summary or detailed 

data, or introducing new dimensions 

 Slice and dice: project and select  

 Pivot (rotate):  

 reorient the cube, visualization, 3D to series of 2D planes 

 Other operations 

 drill across: involving (across) more than one fact table 

 drill through: through the bottom level of the cube to its back-

end relational tables (using SQL) 



Typical OLAP 

Operations 
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 RLOP 

• Support RDBMS products directly through a dictionary layer of metadata, 
bypassing any requirement for creating a static multidimensional data structure. 

• Multidimensional views of the two-dimensional relational table to be created 
without the need to structure the data around the desired view. 

• Creation of multiple SQL statements to handle user request 

   It is undergoing some technological development 

   Movement toward pure middleware technology that provides 
facilities to simplify development of multidimensional applications 

   Further blurring of the lines that delineate RLOAP and hybrid-
OLAP products. 
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 Managed query environment (MQE) 

• Ability to perform limited analysis capability, either directly against RDBMS 
products, or by leveraging an intermediate MLOP server. 

• Some products developed features to provide “datacube” and “slice and dice” 
analysis capabilities. 

• Query executed and the selected data from the DBMS, which then delivers the 
requested data to the desktop, where it is placed into a datacube. 

• The datacube can be stored and maintained locally in the desktop. 

• Once the data is in the datacube, users can perform multidimensional analysis. 

• The tools can work with MLOP servers, and the data from the relational 
DBMS can be delivered to the MLOP server, and from there to the desktop. 

• With metadata definitions that assist users in retrieving the correct set of data 
that makes up the datacube. 

• Each user to build a custom datacube, the lack of data consistency among 
users, and the relatively small amount of data that can be efficiently maintained 
are significant. 

   Examples 

    Cognos Software’s PowerPlay, Andyne Software’s 
Pablo, Dimensional Insight’s CrossTarget, and Speedware’s Media. 
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 State of the Market 
• OLAP tools provide way to view the corporate data 

• The tools aggregate data along common business subjects or dimensions and 
then let the users navigate through the hierarchies and dimensions. 

• Some tools preaggregate data in special multidimensional database. 

• Some other tools work directly against relational data and aggregate data on the 
fly. 

• Some tools process OLAP data on the desktop instead of server. 

• Leading database vendors incorporate OLAP functionality in their database 
kernels. 

 Cognos PowerPlay 

 IBI FOCUS Fusion 

 Pilot Software 

 

 

 



 OLAP Tools and the Internet 

   The Internet/WWW and data warehouse are tightly bound 
together 

 The Internet si a virtually free resource which provides a universal 
connectivity within and between companies 

 The Web eases complex administrative tasks of managing distributed 
environments 

 The Web allows companies to store and manage both data and 
applications on server that can be centrally managed, maintained and 
updated 

 First-generation Web sites – The client can access the decision support report 
through static HTML pages via web browsers. 

 Second-generation Web sites – Interactive and CGI (HTML gateway) 

 Third-generation Web sites – Java Applets, and Web based application servers 

  Vendors approaches for deploying tools on the Web include 

 HTML publishing 

 Helper applications 

 Plug-ins 

 Server-centric components 

 Java and ActiveX applications 
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 Tools from Internet/Web implementations 

 Arbor Essbase Web 

  It includes OLAP manipulations 

         Drill up, down, and across 

   pivot, slice and dice 

   Fixed and dynamic reporting also data entry  

  It doesn't have client package. 

 

 Information Advantage WebOLAP 

   Server-centric  

   Powerful analytical engine that generates SQL to pull data from 
relational database 

   Provide client based package 

   Data store and the analytical engine are separate 

    



 MicroStrategy DSS Web 

   DSS server 

   relational OLAP server 

   DSS Architect data modeling tool 

   Dss Executive design tool for building executive information 
system 

 Brio technology 

   Support OLAP applications on the Web 

   Its own server brio.query.server 
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Introduction 

• Extracting or “mining” knowledge from large amounts of data  
• “Knowledge mining from data”.  
• Knowledge mining, knowledge extraction, data/pattern analysis, data 

archaeology 

• Data mining is a step in the process of knowledge discovery.  

  Knowledge discovery is a process consists of iterative sequence of steps. 

1. Data cleaning -  to remove noise and inconsistent data 

2. Data integration – where multiple data sources may be combined 

3. Data selection – where relevant to the analysis task are retrieved form the 
database 

4. Data transformation – where data are transformed or consolidated into forms 
appropriate for mining by performing summary or aggregation operations. 

5. Data mining – methods are applied to extract data patterns 

6. Patter evaluation – to identify patterns representing knowledge based on 
some interestingness measure 

7. Knowledge presentation – techniques are used to present the mined 
knowledge to the user 
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 Types of Data  
   Data mining can be performed on any kind of data repository 

including data streams. It includes the following data sources 

 Database-oriented data sets and applications 

 Relational database, data warehouse, transactional database 

 Advanced data sets and advanced applications  

 Data streams and sensor data 

 Time-series data, temporal data, sequence data (incl. bio-sequences)  

 Structure data, graphs, social networks and multi-linked data 

 Object-relational databases 

 Heterogeneous databases and legacy databases 

 Spatial data and spatiotemporal data 

 Multimedia database 

 Text databases 

 The World-Wide Web 



Relational Databases 

 Cust_ID Name Address Age Income Category 

123 

---- 

M.Kannan 

------- 

123, south st, 

-------- 

34 

-- 

34000 

------ 

2 

----- 

Data Warehouses  

 A data warehouse is a repository of information collected from multiple 
sources, stored under a unified schema, and that usually resides at a single site.  
 Data warehouse are constructed via a process of data cleaning, data 
integration, data transformation, data loading, and periodic data refreshing. 
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Transactional Databases  
 A transactional database consists of a file where each record represents a 
transaction. A transaction typically includes a unique transaction identity number 
(trans_ID) and a list of  the items making up the transaction.  



 Advanced Data and Information Systems and Advanced Applications 

 Object-Relational Databases 

• A set of variables that describe the object (also called attributes) 
• A set of messages that the object can use to communicate with other objects  
• A set of methods, where each method holds the code to implement a message. 

   
 Temporal Databases, Sequence Databases, and Time-Series Databases 

• Temporal database typically stores relational data that including time-related 
attributes.  

• Data mining techniques can be used to find the characteristics of object  
      evolution or the trend of changes for objects in the database.  

 
 Spatial Databases and Spatiotemporal Databases 

• Spatial database contain spatial-related information  
• Geographic database, very large-scale integration or computed-aided design 

databases, and medical and satellite image databases.  
• Geographic databases are commonly used in vehicle navigation and 

dispatching systems. 



 Text Databases and Multimedia Databases 

• Text databases are databases that contain word descriptions for objects.  

• These word descriptions are usually not simple keywords  

• By mining text data, one may uncover general and concise descriptions of the 
text documents, keyword or content associations  

• Multimedia databases store image, audio, and video data.  
• Content-based retrieval, voice-mail systems, video-on-demand systems, the 

World Wide Web, and speech-based user interfaces that recognize spoken 
commands 
 

 Heterogeneous Databases and Legacy Databases 
• A heterogeneous database consists of a set of interconnected, autonomous 

component database  
 

 Data Streams 
• Data flow in and out of an observation platform (or window) dynamically  
• Power supply, network traffic, stock exchange, telecommunication, Web click 

streams video surveillance, and weather or environment monitoring  
 

   



 The World Wide Web 

• Capturing user access patterns in such distributed information environments is 
called Web usage mining (or Weblog mining). 

• Automated Web page clustering and classification help group and arrange Web 
pages in a multidimensional manner based on their contents. 

•  Web community analysis helps identify hidden Web social networks and 
communities and observer their evolution.  



 Data Mining Functionalities  

  Data mining tasks can be classified into two categories 

 Descriptive mining – Characterize the general properties of the data in 
the database. 

 Predictive mining – Perform inference on the current data in order to 
make prediction. 

  Concepts/Class Description: Characterization and Discrimination  
 Data can be associated with classes or concepts  
 Data characterization is a summarization of the general characteristics or 

features of target class of data.  
 The data corresponding to the user-specified class are typically collected 

by a database query. 
 The output of data characterization can be pie charts, bar charts, curves, 

multidimensional data cubes, and multidimensional table, including 
corsstabs.  
 

 Data characterization is a summarization of the general characteristics or 
features of target class of data. The data corresponding to the user-specified 
class are typically collected by a database query. 



   There are several methods for effective data summarization and 
characterization. Simple data summaries based on statistical measures. 

    An attribute-oriented induction technique can be used to 
perform data generalization and characterization without step-by-step user 
interaction. 

   The output of data characterization can be presented in various 
formats. Examples include pie charts, bar charts, curves, multidimensional data 
cubes, and multidimensional table, including corsstabs.  

 Data discrimination is a comparison of the general features of target class data 
objects with the general features of objects from one or a set of contrasting 
classes.  

   The target and contrasting classes can be specified by the user, 
and the corresponding data objects retrieved through database queries. 

    For example, the user may like to compare the general features 
of software products whose sales increased by 10% in the last year with those 
whose sales decreased by at least 30% during the same period. 



 Mining Frequent Patterns, Associations, and Correlations  

   Frequent patterns, are patterns that occur frequently in data. 
There many kinds of frequent patterns, including itemsets, subsequences, and 
substructures.  

   A frequent itemset typically refers to a set of items that 
frequently appear together in a transactional data set, such as milk and bread.   

   A frequently occurring subsequence, such as the pattern that 
customers tend to purchase first a PC, followed by a digital camera, and then a 
memory card, is a (frequent) sequential pattern.  

   A substructure can refer to different structural forms, such as 
graphs, trees, or lattices, which may be combined with itemsets ro 
subsequences. If a substructure occurs frequently, it is called a (frequent) 
structured pattern. Mining frequent patterns lead to discovery of interesting 
associations and correlations within data. 



 Classification and Prediction  
   Classification is the process of finding a model (or function) 

that describes and distinguishes data classes or concepts, for the purposes of 
being able to use the method to predict the class of objects whose class label is 
unknown.  

   The derived model is based on the analysis of asset of training 
data (i.e., data objects whose class label is known).  

   A decision tree is a flow-chart-like tree structure, where each 
node denotes a test on  an attribute value, each branch represents an outcome of 
the test, and tree leaves represent classes or class distributions. 

    Decision trees can easily be converted to classification rules.  

   Prediction is used to predict missing or unavailable numerical 
data values rather than class labels. Regression analysis is a statistical 
methodology that is most often used for numeric prediction.  



 Age(X,”youth”) AND income(X,”high”)                        class(X,”A”) 
 Age(X,”youth”) AND income(X,”low”)                         class(X,”B”) 
 Age(X,”middle_aged”)                                                    class(X,”C”) 

 Age(X,”senior”)                                                               class(X,”C”) 

age? 

income? 
class C 

class A class B 

youth 

high 

low 

middle_aged, 

senior 



 Cluster Analysis  
   Clustering analyzes data objects without consulting a known 

class label.  In general, the data labels are not present in the training data 
simple because they are not known to begin with. Clustering can be used to 
generate such labels.  

   The objects are clustered or grouped based on the principle of 
maximizing the intraclass similarity and minimizing the interclass similarity. 

 Outlier Analysis  
   A database may contain data objects that do not comply with 

the general behavior or model of the data. These data objects are outliers.  

   Most data mining methods discard outliers as noise or 

exceptions. 

   However, in some applications such as fraud detection, the rare 
events can be more interesting than the more regularly occurring ones. 

   The analysis of outlier data is referred to as outlier mining. 



 Example : Outlier analysis may uncover fraudulent usage of credit cards by 
detecting purchases of extremely large amounts for a given account number in 
comparison to regular charges incurred by the same account. 

 Evolution Analysis  

   Data evolution analysis describes and models regularities or 

trends for objects whose behavior changes over time.  

 Example: A data mining study of stock exchange data may identify stock 
evolution regularities for overall stocks and for the stocks of particular 
companies.  

 Interestingness of Pattern 

   A data mining system has the potential to generate thousands of 
patterns, or rules. But only a small fraction of the patterns potentially generated 
would actually be of interest to any giver user. 

   An interesting pattern represents knowledge. 



   Several objective measures of pattern interestingness exist.  
   An objective measure for association rules of the form S ==> Y 

is rule support 

   Another objective measure of association rules is confidence  

     support(X=> Y) = P(XUY) 

     confidence(X=> Y) = P(Y/X) 

      No. of tuples containing both  X and  Y 

 support (X=> Y) =            --------------------------------------------------- 

             total number of  tuples 

 

         No. of tuples_ containing both  X and  Y 

 confidence (X=> Y) =       -------------------------------------------------- 

               Number of  tuples containing X 



 Classification of Data Mining Systems 

   Data mining is an interdisciplinary field, including database 
systems, statistics, machine learning, visualization, and information science  

   Data mining systems can be categorized according to various 
criteria 

 Classification according to the kinds of databases mined:  

   A data mining system can be classified according to the kinds 
of databases mined.  

   If classifying according to the special types of data handles, 
time-series, text stream data, multimedia data mining systems, or World Wide 
Web mining system. 

 Classification according to the kinds of techniques utilized: 

   Data mining systems can be categorized according to the 
underlying data mining techniques employed.  

 Classification according to the applications adopted: 

   Data mining systems can also be categorized according to the 
applications they adapt. For example, data mining systems may be tailored 
specifically for finance, telecommunications, DNA, stock markets, e-mail, and 
so on.  
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 Data Mining Task Primitives  

   A data mining query is defined in terms of data mining task 

primitives. These primitives allow the user interactively communicate with the 
data mining system during discovery in order to direct the mining process, or 
examine the findings from different angels or depths.  

 

   The data mining primitives specify the following. 

 

 The set of task-relevant data to be mined: This specifies the portions of the 
database or the set of data in which the user is interested. This includes the 
database attributes or data warehouse dimensions of interest. 

 The kind of knowledge to be mined: This specifies the data mining functions to 
be performed, such as characterization, discrimination, association or 
correlation analysis, classification, prediction, clustering, outlier analysis, or 
evolution analysis. 



 The background knowledge to be used in the discovery process: This 
knowledge about the domain to be mined is useful for guiding the knowledge 
discovery  

       process and for evaluating the patterns found.  
 

 The interestingness measures and thresholds for pattern evaluation: They may 
be used to guide the mining process or , after discovery, to evaluate the 
discovered patterns. Different kinds of knowledge may have different 

interestingness measure.  
 The expected representation for visualizing the discovered patterns: This 

refers to the form in which discovered patterns are to be displayed, which may 
include rules, tables, charts, graphs, decision trees, and cubes. 
 



 Integration of a Data Mining System with a Database or Data Warehouse 

System 

   The possible integration schemes are as follows. 

 No coupling:  

   Data mining system will not utilize any function of a Database 
or Data warehouse system. It may fetch data from a particular source (such as a 
file system), process data using some data mining algorithms, and then the 
mining results in another file. 

 Loose coupling:  

   Data mining system will use some facilities of a Database or 
Data warehouse system fetching data from a data repository managed by these 
systems, performing data mining, and then storing the mining results either in a 
file or in a designated place in a database or data warehouse. 



 Semitight coupling:  

   Besides linking a Data mining system to Database /Data 
warehouse system, efficient implementations of a few essential data mining 
primitives can be provided in the Database/Data warehouse system.  

   These primitives can include sorting, indexing, aggregation, 
histogram analysis, multiway join, and precomputation of some essential 
statistical measure, such as sum, count, max, min, standard deviation, and so 
on.  

 Tight coupling:  

   Data mining system is smoothly integrated into the 
Database/Data warehouse system. The data mining subsystem is treated as one 
functional component of an information system.  



 Major Issues in Data Mining  

 The issues in data mining regarding mining methodology are given below. 

 

 Mining methodology and user interaction issues: These reflect the kinds of 
knowledge mined, the ability to mine knowledge at multiple granularities, the 
use of domain knowledge, ad hoc mining, and knowledge visualization. 

 Mining different kinds of knowledge in databases: Because different users can 
be interested in different kinds of knowledge, data mining should cover a wide 
spectrum of data analysis and knowledge discovery tasks, including data 
characterization, discrimination, association and correlation analysis, 
classification, prediction, clustering, outlier analysis, and evolution analysis.  

 Interactive mining of knowledge at multiple levels of abstraction:  

   The data mining process should be interactive.  

   Interactive mining allows users to focus the search for patterns, 
providing and refining data mining requests based on returned results. 
Specifically, knowledge should be drilling down, rolling up, and pivoting 
through the data space and knowledge space interactively 

 



 Incorporation of background knowledge:  

   Domain knowledge related to databases, such as integrity 
constraints and deduction rules, can help focus and speed up a data mining 
process, or judge the interestingness of discovered patterns.  

 Data mining query languages and ad hoc data mining:  

   Data mining query languages need to be developed to allow 
users to describe ad hoc data mining tasks by facilitating the specification of 
the relevant sets of data for analysis, the domain knowledge, the kinds of 
knowledge to be mined, and the conditions and constraints to be enforced on 
the discovered patterns.  

 



 Presentation and visualization of data mining results:  

   Discovered knowledge should be expressed in high-level 
languages, visual representations, or other expressive forms so that the 
knowledge can be easily understood and directly usable by humans.  

 Handling noisy or incomplete data:  

   The data stored in a database may reflect noise, exceptional 
cases, or incomplete data objects. When mining data regularities, these objects 
may confuse the process, causing the knowledge model constructed to overfit 
the data.  

 Pattern evaluation-the interestingness problem: 

    A data mining system can uncover thousands of patterns.  



Why Data Preprocessing? 

 Data in the real world is dirty 

 incomplete: lacking attribute values, lacking certain attributes 
of interest, or containing only aggregate data 

 e.g., occupation=“ ” 

 noisy: containing errors or outliers 

 e.g., Salary=“-10” 

 inconsistent: containing discrepancies in codes or names 

 e.g., Age=“42” Birthday=“03/07/1997” 

 e.g., Was rating “1,2,3”, now rating “A, B, C” 

 e.g., discrepancy between duplicate records 



Why Is Data Dirty? 

 Incomplete data may come from 
 “Not applicable” data value when collected 

 Different considerations between the time when the data was collected and 
when it is analyzed. 

 Human/hardware/software problems 

 Noisy data (incorrect values) may come from 
 Faulty data collection instruments 

 Human or computer error at data entry 

 Errors in data transmission 

 Inconsistent data may come from 
 Different data sources 

 Functional dependency violation (e.g., modify some linked data) 

 Duplicate records also need data cleaning 



Why Is Data Preprocessing Important? 

 No quality data, no quality mining results! 

 Quality decisions must be based on quality data 

 e.g., duplicate or missing data may cause incorrect or even misleading 

statistics. 

 Data warehouse needs consistent integration of quality data 

 Data extraction, cleaning, and transformation comprises the majority of the 

work of building a data warehouse 



Multi-Dimensional Measure of Data Quality 

 A well-accepted multidimensional view: 
 Accuracy 

 Completeness 

 Consistency 

 Timeliness 

 Believability 

 Value added 

 Interpretability 

 Accessibility 

 Broad categories: 
 Intrinsic, contextual, representational, and accessibility 



Major Tasks in Data Preprocessing 

 Data cleaning 
 Fill in missing values, smooth noisy data, identify or remove outliers, and 

resolve inconsistencies 

 Data integration 
 Integration of multiple databases, data cubes, or files 

 Data transformation 
 Normalization and aggregation 

 Data reduction 
 Obtains reduced representation in volume but produces the same or 

similar analytical results 

 Data discretization 
 Part of data reduction but with particular importance, especially for 

numerical data 



Forms of Data Preprocessing  



Measuring the Central Tendency 

Mean (algebraic measure) (sample vs. population): 

 Weighted arithmetic mean: 

 Trimmed mean: chopping extreme values 

Median: A holistic measure 

 Middle value if odd number of values, or average of the middle two values 

otherwise 

 Estimated by interpolation (for grouped data): 

Mode 

 Value that occurs most frequently in the data 

 Unimodal, bimodal, trimodal 

 Empirical formula: 
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 Symmetric vs. Skewed Data 

Median, mean and mode of symmetric, 

positively and negatively skewed data 



Measuring the Dispersion of Data 

Quartiles, outliers and boxplots 

 Quartiles: Q1 (25th percentile), Q3 (75th percentile) 

 Inter-quartile range: IQR = Q3 – Q1  

 Five number summary: min, Q1, M, Q3, max 

 Boxplot: ends of the box are the quartiles, median is marked, whiskers, 

and plot outlier individually 

 Outlier: usually, a value higher/lower than 1.5 x IQR 

Variance and standard deviation (sample: s, population: σ) 

 Variance: (algebraic, scalable computation) 

 

 

 Standard deviation s (or σ) is the square root of variance s2 (or σ2) 
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Properties of Normal Distribution Curve 

The normal (distribution) curve 

 From μ–σ to μ+σ: contains about 68% of the measurements  (μ: mean, σ: 
standard deviation) 

  From μ–2σ to μ+2σ: contains about 95% of it 

 From μ–3σ to μ+3σ: contains about 99.7% of it 

 

 

 



 Boxplot Analysis 

Five-number summary of a distribution: 

Minimum, Q1, M, Q3, Maximum 

Boxplot 

 Data is represented with a box 

 The ends of the box are at the first and third quartiles, i.e., 

the height of the box is IRQ 

 The median is marked by a line within the box 

 Whiskers: two lines outside the box extend to Minimum 

and Maximum 



Visualization of Data Dispersion: Boxplot Analysis 



Histogram Analysis 

 Graph displays of basic statistical class 
descriptions 

 Frequency histograms  

 A univariate graphical method 

 Consists of a set of rectangles that reflect the counts or 
frequencies of the classes present in the given data 



Quantile Plot 

 Displays all of the data (allowing the user to assess 
both the overall behavior and unusual occurrences) 

 Plots quantile information 

 For a data xi data sorted in increasing order, fi indicates 
that approximately 100 fi% of the data are below or equal 
to the value xi 



Scatter plot 

 Provides a first look at bivariate data to see clusters of points, outliers, etc 

 Each pair of values is treated as a pair of coordinates and plotted as points in 
the plane 



Positively and Negatively Correlated Data 



 Not Correlated Data 



Data Cleaning 

 Data cleaning tasks 

 Fill in missing values 

 Identify outliers and smooth out noisy data  

 Correct inconsistent data 

 Resolve redundancy caused by data integration 



 Missing Data 

 Data is not always available 

 E.g., many tuples have no recorded value for several attributes, such as 

customer income in sales data 

 Missing data may be due to  

 equipment malfunction 

 inconsistent with other recorded data and thus deleted 

 data not entered due to misunderstanding 

 certain data may not be considered important at the time of entry 

 not register history or changes of the data 

 Missing data may need to be inferred. 



 How to Handle Missing Data? 

 Ignore the tuple: usually done when class label is missing 

(assuming the tasks in classification—not effective when the 

percentage of missing values per attribute varies considerably. 

 Fill in the missing value manually: tedious + infeasible? 

 Fill in it automatically with 

 a global constant : e.g., “unknown”, a new class?!  

 the attribute mean 

 the attribute mean for all samples belonging to the same class: smarter 

 the most probable value: inference-based such as Bayesian formula or 

decision tree 



 Noisy Data 

 Noise: random error or variance in a measured variable 

 Incorrect attribute values may due to 

 faulty data collection instruments 

 data entry problems 

 data transmission problems 

 technology limitation 

 inconsistency in naming convention  

 Other data problems which requires data cleaning 

 duplicate records 

 incomplete data 

 inconsistent data 



 How to Handle Noisy Data? 

 Binning 
 first sort data and partition into (equal-frequency) bins 

 then one can smooth by bin means,  smooth by bin median, 
smooth by bin boundaries, etc. 

 Regression 
 smooth by fitting the data into regression functions 

 Clustering 
 detect and remove outliers 

 Combined computer and human inspection 
 detect suspicious values and check by human (e.g., deal with 

possible outliers) 



Simple Discretization Methods: Binning 

 Equal-width (distance) partitioning 

 Divides the range into N intervals of equal size: uniform grid 

 if A and B are the lowest and highest values of the attribute, the width of 

intervals will be: W = (B –A)/N. 

 The most straightforward, but outliers may dominate presentation 

 Skewed data is not handled well 

 Equal-depth (frequency) partitioning 

 Divides the range into N intervals, each containing approximately same 

number of samples 

 Good data scaling 

 Managing categorical attributes can be tricky 



Binning Methods for Data Smoothing 

Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 
29, 34 

 *  Partition into equal-frequency (equi-depth) bins: 

       - Bin 1: 4, 8, 9, 15 

       - Bin 2: 21, 21, 24, 25 

       - Bin 3: 26, 28, 29, 34 

 *  Smoothing by bin means: 

       - Bin 1: 9, 9, 9, 9 

       - Bin 2: 23, 23, 23, 23 

       - Bin 3: 29, 29, 29, 29 

 *  Smoothing by bin boundaries: 

       - Bin 1: 4, 4, 4, 15 

       - Bin 2: 21, 21, 25, 25 

       - Bin 3: 26, 26, 26, 34 



Regression 

x 

y 

y = x + 1 
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Y1’ 



Cluster Analysis 



Data Integration 

 Data integration:  
 Combines data from multiple sources into a coherent 

store 

 Schema integration: e.g., A.cust-id  B.cust-# 
 Integrate metadata from different sources 

 Entity identification problem:  
 Identify real world entities from multiple data sources, 

e.g., Bill Clinton = William Clinton 

 Detecting and resolving data value conflicts 
 For the same real world entity, attribute values from 

different sources are different 

 Possible reasons: different representations, different 
scales, e.g., metric vs. British units 



Handling Redundancy in Data Integration 

 Redundant data occur often when integration of multiple 

databases 

 Object identification:  The same attribute or object may have 

different names in different databases 

 Derivable data: One attribute may be a “derived” attribute in 
another table, e.g., annual revenue 

 Redundant attributes may be able to be detected by 

correlation analysis 

 Careful integration of the data from multiple sources 

may help reduce/avoid redundancies and inconsistencies 

and improve mining speed and quality 



Correlation Analysis (Numerical Data) 

Correlation coefficient (also called Pearson’s product 
moment coefficient) 

 

 

 
where n is the number of tuples,       and      are the respective means of A and 

B, σA and σB are the respective standard deviation of A and B, and Σ(AB) is 

the sum of the AB cross-product. 

If rA,B > 0, A and B are positively correlated (A’s values 
increase as B’s).  The higher, the stronger correlation. 
rA,B = 0: independent;  rA,B < 0: negatively correlated 
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Correlation Analysis (Categorical Data) 

Χ2 (chi-square) test 

 

 

The larger the Χ2 value, the more likely the variables 

are related 

The cells that contribute the most to the Χ2 value are 

those whose actual count is very different from the 

expected count 

Correlation does not imply causality 
 # of hospitals and # of car-theft in a city are correlated 

 Both are causally linked to the third variable: population 
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Data Transformation 

 Smoothing: remove noise from data 

 Aggregation: summarization, data cube construction 

 Generalization: concept hierarchy climbing 

 Normalization: scaled to fall within a small, specified 

range 

 min-max normalization 

 z-score normalization 

 normalization by decimal scaling 

 Attribute/feature construction 

 New attributes constructed from the given ones 



Data Reduction Strategies 

 Why data reduction? 
 A database/data warehouse may store terabytes of data 

 Complex data analysis/mining may take a very long time to 
run on the complete data set 

 Data reduction  
 Obtain a reduced representation of the data set that is much 

smaller in volume but yet produce the same (or almost the 
same) analytical results 

 Data reduction strategies 
 Data cube aggregation: 

 Dimensionality reduction — e.g., remove unimportant 
attributes 

 Data Compression 

 Numerosity reduction — e.g., fit data into models 

 Discretization and concept hierarchy generation 



Data Cube Aggregation 

 The lowest level of a data cube (base cuboid) 

 The aggregated data for an individual entity of interest 

 E.g., a customer in a phone calling data warehouse 

 Multiple levels of aggregation in data cubes 

 Further reduce the size of data to deal with 

 Reference appropriate levels 

 Use the smallest representation which is enough to solve the 

task 

 Queries regarding aggregated information should be 

answered using data cube, when possible 



Attribute Subset Selection 

 Feature selection (i.e., attribute subset selection): 

 Select a minimum set of features such that the probability 
distribution of different classes given the values for those 
features is as close as possible to the original distribution 
given the values of all features 

 reduce # of patterns in the patterns, easier to understand 

 Heuristic methods (due to exponential # of choices): 

 Step-wise forward selection 

 Step-wise backward elimination 

 Combining forward selection and backward elimination 

 Decision-tree induction 



Example of Decision Tree Induction 

Initial attribute set: 
{A1, A2, A3, A4, A5, A6} 

A4 ? 

A1? A6? 

Class 1 Class 2 Class 1 Class 2 

> Reduced attribute set:  {A1, A4, A6} 



Data Compression 

 String compression 

 There are extensive theories and well-tuned algorithms 

 Typically lossless 

 But only limited manipulation is possible without expansion 

 Audio/video compression 

 Typically lossy compression, with progressive refinement 

 Sometimes small fragments of signal can be reconstructed 
without reconstructing the whole 

 Time sequence is not audio 

 Typically short and vary slowly with time 



Data Compression 

Original Data Compressed  
Data 

lossless 

Original Data 
Approximated  



Dimensionality Reduction: Wavelet Transformation  

 Discrete wavelet transform (DWT): linear signal 

processing, multi-resolutional analysis 

 Compressed approximation: store only a small fraction 

of the strongest of the wavelet coefficients 

 Similar to discrete Fourier transform (DFT), but better 

lossy compression, localized in space 

 Method: 
 Length, L, must be an integer power of 2 (padding with 0’s, when 

necessary) 

 Each transform has 2 functions: smoothing, difference 

 Applies to pairs of data, resulting in two set of data of length L/2 

 Applies two functions recursively, until reaches the desired length 



Dimensionality Reduction: Principal Component Analysis (PCA) 

 Given N data vectors from n-dimensions, find k ≤ n  orthogonal 
vectors (principal components) that can be best used to represent 
data  

 Steps 
 Normalize input data: Each attribute falls within the same range 

 Compute k orthonormal (unit) vectors, i.e., principal components 

 Each input data (vector) is a linear combination of the k principal 
component vectors 

 The principal components are sorted in order of decreasing “significance” 
or strength 

 Since the components are sorted, the size of the data can be reduced by 
eliminating the weak components, i.e., those with low variance.  (i.e., 
using the strongest principal components, it is possible to reconstruct a 
good approximation of the original data 

 Works for numeric data only 

 Used when the number of dimensions is large 



X1 

X2 

Y1 

Y2 

Principal Component Analysis 



Numerosity Reduction 

 Reduce data volume by choosing alternative, smaller 
forms of data representation 

 Parametric methods 

 Assume the data fits some model, estimate model parameters, 
store only the parameters, and discard the data (except possible 
outliers) 

 Example: Log-linear models—obtain value at a point in m-D 
space as the product on appropriate marginal subspaces  

 Non-parametric methods  

 Do not assume models 

 Major families: histograms, clustering, sampling  



Data Reduction Method (1): Regression and Log-Linear Models 

 Linear regression: Data are modeled to fit a straight 

line 

 Often uses the least-square method to fit the line 

 Multiple regression: allows a response variable Y to 

be modeled as a linear function of multidimensional 

feature vector 

 Log-linear model: approximates discrete 

multidimensional probability distributions 



Data Reduction Method (2): 

Histograms 
 Divide data into buckets and 

store average (sum) for each 

bucket 

 Partitioning rules: 

 Equal-width: equal bucket range 

 Equal-frequency (or equal-depth) 

 V-optimal: with the least 

histogram variance (weighted sum 

of the original values that each 

bucket represents) 

 MaxDiff: set bucket boundary 

between each pair for pairs have 

the β–1 largest differences 
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Data Reduction Method (3): Clustering 

 Partition data set into clusters based on similarity, and store 

cluster representation (e.g., centroid and diameter) only 

 Can be very effective if data is clustered but not if data is 

“smeared” 

 Can have hierarchical clustering and be stored in multi-

dimensional index tree structures 

 There are many choices of clustering definitions and clustering 

algorithms 

 



Data Reduction Method (4): Sampling 

 Sampling: obtaining a small sample s to represent the 
whole data set N 

 Allow a mining algorithm to run in complexity that is 
potentially sub-linear to the size of the data 

 Choose a representative subset of the data 
 Simple random sampling may have very poor performance 

in the presence of skew 

 Develop adaptive sampling methods 
 Stratified sampling:  

 Approximate the percentage of each class (or subpopulation of 
interest) in the overall database  

 Used in conjunction with skewed data 

 Note: Sampling may not reduce database I/Os (page at 
a time) 



Sampling: Cluster or Stratified Sampling 

Raw Data  Cluster/Stratified Sample 



Discretization 

 Three types of attributes: 

 Nominal — values from an unordered set, e.g., color, profession 

 Ordinal — values from an ordered set, e.g., military or academic rank  

 Continuous — real numbers, e.g., integer or real numbers 

 Discretization:  

 Divide the range of a continuous attribute into intervals 

 Some classification algorithms only accept categorical attributes. 

 Reduce data size by discretization 

 Prepare for further analysis 



Discretization and Concept Hierarchy 

 Discretization  

 Reduce the number of values for a given continuous attribute by dividing 

the range of the attribute into intervals 

 Interval labels can then be used to replace actual data values 

 Supervised vs. unsupervised 

 Split (top-down) vs. merge (bottom-up) 

 Discretization can be performed recursively on an attribute 

 Concept hierarchy formation 

 Recursively reduce the data by collecting and replacing low level 

concepts (such as numeric values for age) by higher level concepts (such 

as young, middle-aged, or senior) 



Discretization and Concept Hierarchy Generation for Numeric Data 

 Typical methods: All the methods can be applied recursively 

 Binning (covered above) 

 Top-down split, unsupervised,  

 Histogram analysis (covered above) 

 Top-down split, unsupervised 

 Clustering analysis (covered above) 

 Either top-down split or bottom-up merge, unsupervised 

 Entropy-based discretization: supervised, top-down split 

 Interval merging by 2 Analysis: unsupervised, bottom-up merge 

 Segmentation by natural partitioning: top-down split, unsupervised 



Entropy-Based Discretization 

 Given a set of samples S, if S is partitioned into two intervals S1 

and S2 using boundary T, the information gain after partitioning 

is 

 

 Entropy is calculated based on class distribution of the samples 

in the set.  Given m classes, the entropy of S1 is 

 

where pi  is the probability of class i in S1 

 The boundary that minimizes the entropy function over all 

possible boundaries is selected as a binary discretization 

 The process is recursively applied to partitions obtained until 

some stopping criterion is met 

 Such a boundary may reduce data size and improve 
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Segmentation by Natural Partitioning 

 A simply 3-4-5 rule can be used to segment numeric 

data into relatively uniform, “natural” intervals. 
 If an interval covers 3, 6, 7 or 9 distinct values at the most 

significant digit, partition the range into 3 equi-width 

intervals 

 If it covers 2, 4, or 8 distinct values at the most significant 

digit, partition the range into 4 intervals 

 If it covers 1, 5, or 10 distinct values at the most significant 

digit, partition the range into 5 intervals 



Example of 3-4-5 Rule 

(-$400 -$5,000) 

(-$400 - 0) 

(-$400 - 
 -$300) 

(-$300 -  
 -$200) 

(-$200 - 
 -$100) 

(-$100 - 
  0) 

(0 - $1,000) 

(0 -  
 $200) 

($200 - 
 $400) 

($400 - 
 $600) 

($600 - 
 $800) ($800 - 

 $1,000) 

($2,000 - $5, 000) 

($2,000 - 
 $3,000) 

($3,000 - 
 $4,000) 

($4,000 - 
 $5,000) 

($1,000 - $2, 000) 

($1,000 - 
 $1,200) 

($1,200 - 
 $1,400) 

($1,400 - 
 $1,600) 

($1,600 - 
 $1,800) 

($1,800 - 
 $2,000) 

                        msd=1,000 Low=-$1,000 High=$2,000 Step 2: 

Step 4: 

Step 1:          -$351 -$159  profit              $1,838          $4,700  

       Min             Low (i.e, 5%-tile)                             High(i.e, 95%-0 tile)        Max 

count 

(-$1,000  - $2,000) 

(-$1,000 - 0) (0 -$ 1,000) 

Step 3: 

($1,000 - $2,000) 



Concept Hierarchy Generation for Categorical Data 

 Specification of a partial/total ordering of attributes 

explicitly at the schema level by users or experts 

 street < city < state < country 

 Specification of a hierarchy for a set of values by 

explicit data grouping 

 {Urbana, Champaign, Chicago} < Illinois 

 Specification of only a partial set of attributes 

 E.g., only street < city, not others 

 Automatic generation of hierarchies (or attribute levels) 

by the analysis of the number of distinct values 

 E.g., for a set of attributes: {street, city, state, country} 



Automatic Concept Hierarchy Generation 

 Some hierarchies can be automatically generated based 
on the analysis of the number of distinct values per 
attribute in the data set  
 The attribute with the most distinct values is placed at the 

lowest level of the hierarchy 

 Exceptions, e.g., weekday, month, quarter, year 

country 

province_or_ state 

city 

street 

15 distinct values 

365 distinct values 

3567 distinct values 

674,339 distinct values 
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What Is Association Mining? 

 Association rule mining: 

 Finding frequent patterns, associations, correlations, or causal structures 
among sets of items or objects in transaction databases, relational databases, 
and other information repositories. 

 Applications: 

 Basket data analysis, cross-marketing, catalog design, loss-leader analysis, 
clustering, classification, etc. 

 Examples.  

 Rule form:  “Body → Head [support, confidence]”. 
 buys(x, “diapers”) → buys(x, “beers”) [0.5%, 60%] 
 major(x, “CS”) ^ takes(x, “DB”) → grade(x, “A”) [1%, 75%] 



I= { I1,I2,I3,………..Im} set of items 

T – transactions such that T           I. 

 TID – Transaction ID 

 Set of items called itemset 

 Itemset contains k-items  then it is k-itemset 

 Support count 

 The occurrence frequency of an itemset is the number of transactions that contain 
the itemset. 

 Frequent itemset 

 The support count satisfies a predefined minimum support threshold 

 

Association Rule: Basic Concepts 



Association Rule: Basic Concepts 

 Given: (1) database of transactions, (2) each transaction is a list of items (purchased 
by a customer in a visit) 

 Find: all rules that correlate the presence of one set of items with that of another set 
of items 

 E.g., 98% of people who purchase tires and auto accessories also get 
automotive services done 

 Applications 

 *    Maintenance Agreement (What the store should do to boost Maintenance 
Agreement sales) 

 Home Electronics   *  (What other products should the store stocks up?) 

 Attached mailing in direct marketing 

 Detecting “ping-pong”ing of patients, faulty “collisions” 



Rule Measures: Support and Confidence 

 Find all the rules X & Y   Z with minimum 
confidence and support 

 support, s, probability that a transaction 
contains {X  Y  Z} 

 confidence, c, conditional probability that 
a transaction having {X ∩ Y} also 
contains Z 

Transaction ID Items Bought

2000 A,B,C

1000 A,C

4000 A,D

5000 B,E,F

Let minimum support 50%, and minimum 

confidence 50%, we have 

 A   C  (50%, 66.6%) 

 C   A  (50%, 100%) 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 



Association Rule Mining: A Road Map 

 Boolean vs. quantitative associations (Based on the types of values handled) 

 buys(x, “SQLServer”) ^ buys(x, “DMBook”) → buys(x, “DBMiner”) [0.2%, 
60%] 

 age(x, “30..39”) ̂  income(x, “42..48K”) → buys(x, “PC”) [1%, 75%] 
 Single dimension vs. multiple dimensional associations (see ex. Above) 

 Single level vs. multiple-level analysis 

 What brands of beers are associated with what brands of diapers? 

 Various extensions 

 Correlation, causality analysis 

 Association does not necessarily imply correlation or causality 

 Maxpatterns and closed itemsets 

 Constraints enforced 

 E.g., small sales (sum < 100) trigger big buys (sum > 1,000)? 



Frequent Patterns and Association Rules 

 Itemset X = {x1, …, xk} 

 Find all the rules X  Y with minimum 
support and confidence 

 support, s, probability that a transaction 
contains X  Y 

 confidence, c, conditional probability 
that a transaction having X also 
contains Y 

Let  supmin = 50%,  confmin = 50% 

Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} 

Association rules: 

A  D  (60%, 100%) 

D  A  (60%, 75%) 

 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 

Transaction-id Items bought 

10 A, B, D 

20 A, C, D 

30 A, D, E 

40 B, E, F 

50 B, C, D, E, F 



What Is Frequent Pattern Analysis? 

 Frequent pattern: a pattern (a set of items, subsequences, substructures, 

etc.) that occurs frequently in a data set  

 First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context 

of frequent itemsets and association rule mining 

 Motivation: Finding inherent regularities in data 

 What products were often purchased together?— Beer and diapers?! 

 What are the subsequent purchases after buying a PC? 

 What kinds of DNA are sensitive to this new drug? 

 Can we automatically classify web documents? 

 Applications 

 Basket data analysis, cross-marketing, catalog design, sale campaign 

analysis, Web log (click stream) analysis, and DNA sequence analysis. 



Why Is Freq. Pattern Mining Important? 

 Discloses an intrinsic and important property of data sets 

 Forms the foundation for many essential data mining tasks 

 Association, correlation, and causality analysis 

 Sequential, structural (e.g., sub-graph) patterns 

 Pattern analysis in spatiotemporal, multimedia, time-

series, and stream data  

 Classification: associative classification 

 Cluster analysis: frequent pattern-based clustering 

 Data warehousing: iceberg cube and cube-gradient  

 Semantic data compression: fascicles 

 Broad applications 



Closed Patterns and Max-Patterns 

 A long pattern contains a combinatorial number of sub-

patterns, e.g., {a1, …, a100} contains (100
1) + (100

2) + … + 
(1

1
0
0
0
0) = 2100 – 1 = 1.27*1030 sub-patterns! 

 Solution: Mine closed patterns and max-patterns instead 

 An itemset X is closed if X is frequent and there exists no 
super-pattern Y כ X, with the same support as X 

 An itemset X is a max-pattern if X is frequent and there 

exists no frequent super-pattern Y כ X Closed pattern is a 

lossless compression of freq. patterns 

 Reducing the # of patterns and rules 



Closed Patterns and Max-Patterns 

 Exercise.  DB = {<a1, …, a100>, < a1, …, a50>}  

 Min_sup = 1. 

 What is the set of closed itemset? 

 <a1, …, a100>: 1 

 < a1, …, a50>: 2 

 What is the set of max-pattern? 

 <a1, …, a100>: 1 

 What is the set of all patterns? 

 !! 



Scalable Methods for Mining Frequent Patterns 

 The downward closure property of frequent patterns 

 Any subset of a frequent itemset must be frequent 

 If {beer, diaper, nuts} is frequent, so is {beer, 
diaper} 

 i.e., every transaction having {beer, diaper, nuts} also 
contains {beer, diaper}  

 Scalable mining methods: Three major approaches 

 Apriori (Agrawal & Srikant@VLDB’94) 
 Freq. pattern growth (FPgrowth—Han, Pei & Yin 

@SIGMOD’00) 
 Vertical data format approach (Charm—Zaki & Hsiao 

@SDM’02) 



Apriori: A Candidate Generation-and-Test Approach 

 Apriori pruning principle: If there is any itemset which is 

infrequent, its superset should not be generated/tested! 

(Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94) 
 Method:  

 Initially, scan DB once to get frequent 1-itemset 

 Generate length (k+1) candidate itemsets from length k 

frequent itemsets 

 Test the candidates against DB 

 Terminate when no frequent or candidate set can be 

generated 



The Apriori Algorithm—An Example  

Database TDB 

1st scan 

C1 

L1 

L2 

C2 C2 

2nd scan 

C3 L3 3rd scan 

Tid Items 

10 A, C, D 

20 B, C, E 

30 A, B, C, E 

40 B, E 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{D} 1 

{E} 3 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{E} 3 

Itemset 

{A, B} 

{A, C} 

{A, E} 

{B, C} 

{B, E} 

{C, E} 

Itemset sup 

{A, B} 1 

{A, C} 2 

{A, E} 1 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset sup 

{A, C} 2 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset 

{B, C, E} 

Itemset sup 

{B, C, E} 2 

Supmin = 2 



The Apriori Algorithm 

 Pseudo-code: 
Ck: Candidate itemset of size k 
Lk : frequent itemset of size k 

 

L1 = {frequent items}; 
for (k = 1; Lk !=; k++) do begin 
     Ck+1 = candidates generated from Lk; 
    for each transaction t in database do 

       increment the count of all candidates in Ck+1       
that are contained in t 

    Lk+1  = candidates in Ck+1 with min_support 
    end 
return k Lk; 



Important Details of Apriori 

 How to generate candidates? 

 Step 1: self-joining Lk 

 Step 2: pruning 

 How to count supports of candidates? 

 Example of Candidate-generation 

 L3={abc, abd, acd, ace, bcd} 

 Self-joining: L3*L3 

 abcd from abc and abd 

 acde from acd and ace 

 Pruning: 

 acde is removed because ade is not in L3 

 C4={abcd} 

 



How to Generate Candidates? 

 Suppose the items in Lk-1 are listed in an order 

 Step 1: self-joining Lk-1  

insert into Ck 

select p.item1, p.item2, …, p.itemk-1, q.itemk-1 

from Lk-1 p, Lk-1 q 

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < 

q.itemk-1 

 Step 2: pruning 

forall itemsets c in Ck do 

forall (k-1)-subsets s of c do 

if (s is not in Lk-1) then delete c from Ck 



How to Count Supports of Candidates? 

 Why counting supports of candidates a problem? 

 The total number of candidates can be very huge 

  One transaction may contain many candidates 

 Method: 

 Candidate itemsets are stored in a hash-tree 

 Leaf node of hash-tree contains a list of itemsets and 

counts 

 Interior node contains a hash table 

 Subset function: finds all the candidates contained in 

a transaction 



Example: Counting Supports of Candidates 

1,4,7 

2,5,8 

3,6,9 
Subset function 

2 3 4 
5 6 7 

1 4 5 
1 3 6 

1 2 4 
4 5 7 1 2 5 

4 5 8 
1 5 9 

3 4 5 3 5 6 
3 5 7 
6 8 9 

3 6 7 
3 6 8 

Transaction: 1 2 3 5 6 

1 + 2 3 5 6 

1 2 + 3 5 6 

1 3 + 5 6 



Efficient Implementation of Apriori in SQL 

 Hard to get good performance out of pure SQL (SQL-

92) based approaches alone 

 Make use of object-relational extensions like UDFs, 

BLOBs, Table functions etc. 

 Get orders of magnitude improvement 

 S. Sarawagi, S. Thomas, and R. Agrawal. Integrating 

association rule mining with relational database 

systems: Alternatives and implications. In SIGMOD’98 



Challenges of Frequent Pattern Mining 

 Challenges 

 Multiple scans of transaction database 

 Huge number of candidates 

 Tedious workload of support counting for candidates 

 Improving Apriori: general ideas 

 Reduce passes of transaction database scans 

 Shrink number of candidates 

 Facilitate support counting of candidates 



Partition: Scan Database Only Twice 

 Any itemset that is potentially frequent in DB must be 

frequent in at least one of the partitions of DB 

 Scan 1: partition database and find local frequent 

patterns 

 Scan 2: consolidate global frequent patterns 

 A. Savasere, E. Omiecinski, and S. Navathe. An efficient 

algorithm for mining association in large databases. In 

VLDB’95 



DHP: Reduce the Number of Candidates 

 A k-itemset whose corresponding hashing bucket count is 

below the threshold cannot be frequent 

 Candidates: a, b, c, d, e 

 Hash entries: {ab, ad, ae} {bd, be, de} … 

 Frequent 1-itemset: a, b, d, e 

 ab is not a candidate 2-itemset if the sum of count of 

{ab, ad, ae} is below support threshold 

 J. Park, M. Chen, and P. Yu. An effective hash-based 

algorithm for mining association rules. In SIGMOD’95 



Sampling for Frequent Patterns 

 Select a sample of original database, mine frequent 

patterns within sample using Apriori 

 Scan database once to verify frequent itemsets found in 

sample, only borders of closure of frequent patterns are 

checked 

 Example: check abcd instead of ab, ac, …, etc. 
 Scan database again to find missed frequent patterns 

 H. Toivonen. Sampling large databases for association 

rules. In VLDB’96 



DIC: Reduce Number of Scans 

ABCD 

ABC ABD ACD BCD 

AB AC BC AD BD CD 

A B C D 

{} 

Itemset lattice 

 Once both A and D are determined 
frequent, the counting of AD begins 

 Once all length-2 subsets of BCD are 
determined frequent, the counting of BCD 
begins 

Transactions 

1-itemsets 
2-itemsets 

… 
Apriori 

1-itemsets 
2-items 

3-items DIC 

S. Brin R. Motwani, J. Ullman, 
and S. Tsur. Dynamic itemset 
counting and implication rules for 
market basket data. In 
SIGMOD’97 



Bottleneck of Frequent-pattern Mining 

 Multiple database scans are costly 

 Mining long patterns needs many passes of 

scanning and generates lots of candidates 

 To find frequent itemset i1i2…i100 

 # of scans: 100 

 # of Candidates: (100
1) + (100

2) + … + (1
1
0
0
0
0) = 2100-

1 = 1.27*1030 ! 

 Bottleneck: candidate-generation-and-test 

 Can we avoid candidate generation? 



Mining Frequent Patterns Without 
Candidate Generation 

 Grow long patterns from short ones using local 

frequent items 

 “abc” is a frequent pattern 

 Get all transactions having “abc”: DB|abc 

 “d” is a local frequent item in DB|abc  abcd is 

a frequent pattern 



Construct FP-tree from a Transaction Database 

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
 
Item  frequency  head  
 f 4 
c 4 
a 3 
b 3 
m 3 
p 3 

min_support = 3 

TID  Items bought   (ordered) frequent items 
100  {f, a, c, d, g, i, m, p} {f, c, a, m, p} 
200  {a, b, c, f, l, m, o}  {f, c, a, b, m} 
300   {b, f, h, j, o, w}  {f, b} 
400   {b, c, k, s, p}  {c, b, p} 
500   {a, f, c, e, l, p, m, n} {f, c, a, m, p} 

1. Scan DB once, find 
frequent 1-itemset 
(single item pattern) 

2. Sort frequent items in 
frequency descending 
order, f-list 

3. Scan DB again, 
construct FP-tree 

F-list=f-c-a-b-m-p 



Benefits of the FP-tree Structure 

 Completeness  

 Preserve complete information for frequent pattern 
mining 

 Never break a long pattern of any transaction 

 Compactness 

 Reduce irrelevant info—infrequent items are gone 

 Items in frequency descending order: the more 
frequently occurring, the more likely to be shared 

 Never be larger than the original database (not count 
node-links and the count field) 

 For Connect-4 DB, compression ratio could be over 100 



Partition Patterns and Databases 

 Frequent patterns can be partitioned into subsets 
according to f-list 

 F-list=f-c-a-b-m-p 

 Patterns containing p 

 Patterns having m but no p 

 … 

 Patterns having c but no a nor b, m, p 

 Pattern f 

 Completeness and non-redundency 



Find Patterns Having P From P-conditional Database 

 Starting at the frequent item header table in the FP-tree 
 Traverse the FP-tree by following the link of each frequent item p 
 Accumulate all of transformed prefix paths of item p to form p’s 

conditional pattern base 

Conditional pattern bases 

item cond. pattern base 

c f:3 

a fc:3 

b fca:1, f:1, c:1 

m fca:2, fcab:1 

p fcam:2, cb:1 

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
 
Item  frequency  head  
 f 4 
c 4 
a 3 
b 3 
m 3 
p 3 



From Conditional Pattern-bases to Conditional FP-trees  

 For each pattern-base 

 Accumulate the count for each item in the base 

 Construct the FP-tree for the frequent items of the 
pattern base 

m-conditional pattern base: 

fca:2, fcab:1 

{} 

f:3 

c:3 

a:3 
m-conditional FP-tree 

All frequent 
patterns relate to m 

m,  

fm, cm, am,  

fcm, fam, cam,  

fcam 

  

{} 

f:4 c:1 

b:1 

p:1 

b:1 c:3 

a:3 

b:1 m:2 

p:2 m:1 

Header Table 
Item  frequency  head  
 f 4 
c 4 
a 3 
b 3 
m 3 
p 3 



Recursion: Mining Each Conditional FP-tree 

{} 

f:3 

c:3 

a:3 
m-conditional FP-tree 

Cond. pattern base of “am”: (fc:3) 

{} 

f:3 

c:3 

am-conditional FP-tree 

Cond. pattern base of “cm”: (f:3) 
{} 

f:3 

cm-conditional FP-tree 

Cond. pattern base of “cam”: (f:3) 
{} 

f:3 

cam-conditional FP-tree 



A Special Case: Single Prefix Path in FP-tree 

 Suppose a (conditional) FP-tree T has a shared 

single prefix-path P 

 Mining can be decomposed into two parts 

 Reduction of the single prefix path into one node 

 Concatenation of the mining results of the two 

parts 

 

a2:n2 

a3:n3 

a1:n1 

{} 

b1:m1 
C1:k1 

C2:k2 C3:k3 

b1:m1 
C1:k1 

C2:k2 C3:k3 

r1 

+ 
a2:n2 

a3:n3 

a1:n1 

{} 

r1 = 



Mining Frequent Patterns With FP-trees 

 Idea: Frequent pattern growth 

 Recursively grow frequent patterns by pattern and 
database partition 

 Method  

 For each frequent item, construct its conditional 
pattern-base, and then its conditional FP-tree 

 Repeat the process on each newly created conditional 
FP-tree  

 Until the resulting FP-tree is empty, or it contains only 
one path—single path will generate all the 
combinations of its sub-paths, each of which is a 
frequent pattern 



Scaling FP-growth by DB Projection 

 FP-tree cannot fit in memory?—DB projection 

 First partition a database into a set of projected DBs 

 Then construct and mine FP-tree for each projected DB 

 Parallel projection vs. Partition projection techniques 

 Parallel projection is space costly 



Partition-based Projection 

 Parallel projection needs a lot 

of disk space  

 Partition projection saves it 

Tran. DB  
fcamp 
fcabm 
fb 
cbp 
fcamp 

p-proj DB  
fcam 
cb 
fcam 

m-proj DB  
fcab 
fca 
fca 

b-proj DB  
f 
cb 
… 

a-proj DB 
fc 
… 

c-proj DB 
f 
… 

f-proj DB  
… 

am-proj DB  
fc 
fc 
fc 

cm-proj DB  
f 
f 
f 

… 



FP-Growth vs. Apriori: Scalability With the Support 
Threshold 
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FP-Growth vs. Tree-Projection: Scalability with 
the Support Threshold 
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Why Is FP-Growth the Winner? 

 Divide-and-conquer:  

 decompose both the mining task and DB according to 

the frequent patterns obtained so far 

 leads to focused search of smaller databases 

 Other factors 

 no candidate generation, no candidate test 

 compressed database: FP-tree structure 

 no repeated scan of entire database  

 basic ops—counting local freq items and building sub 

FP-tree, no pattern search and matching 



Implications of the Methodology  

 Mining closed frequent itemsets and max-patterns 

 CLOSET (DMKD’00) 
 Mining sequential patterns 

 FreeSpan (KDD’00), PrefixSpan (ICDE’01) 
 Constraint-based mining of frequent patterns 

 Convertible constraints (KDD’00, ICDE’01) 
 Computing iceberg data cubes with complex measures  

 H-tree and H-cubing algorithm (SIGMOD’01) 



MaxMiner: Mining Max-patterns 

 1st scan: find frequent items 

 A, B, C, D, E 

 2nd scan: find support for  

 AB, AC, AD, AE, ABCDE 

 BC, BD, BE, BCDE 

 CD, CE, CDE, DE, 

 Since BCDE is a max-pattern, no need to check BCD, BDE, 

CDE in later scan 

 R. Bayardo. Efficiently mining long patterns from 

databases. In SIGMOD’98 

Tid Items 

10 A,B,C,D,E 

20 B,C,D,E, 

30 A,C,D,F 

Potential 
max-patterns 



Mining Frequent Closed Patterns: CLOSET 

 Flist: list of all frequent items in support ascending order 

 Flist: d-a-f-e-c 

 Divide search space 

 Patterns having d 

 Patterns having d but no a, etc. 

 Find frequent closed pattern recursively 

 Every transaction having d also has cfa  cfad is a 

frequent closed pattern 

 J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for 

Mining Frequent Closed Itemsets", DMKD'00. 

TID Items 

10 a, c, d, e, f 

20 a, b, e 

30 c, e, f 

40 a, c, d, f 

50 c, e, f 

Min_sup=2 



CLOSET+: Mining Closed Itemsets by 
Pattern-Growth 

 Itemset merging: if Y appears in every occurrence of X, then Y 

is merged with X 

 Sub-itemset pruning: if Y כ X, and sup(X) = sup(Y), X and all of 

X’s descendants in the set enumeration tree can be pruned 

 Hybrid tree projection 

 Bottom-up physical tree-projection 

 Top-down pseudo tree-projection 

 Item skipping: if a local frequent item has the same support in 

several header tables at different levels, one can prune it from 

the header table at higher levels 

 Efficient subset checking 



CHARM: Mining by Exploring Vertical Data Format 

 Vertical format: t(AB) = {T11, T25, …} 

 tid-list: list of trans.-ids containing an itemset  

 Deriving closed patterns based on vertical intersections 

 t(X) = t(Y): X and Y always happen together 

 t(X)  t(Y): transaction having X always has Y 

 Using diffset to accelerate mining 

 Only keep track of differences of tids 

 t(X) = {T1, T2, T3},  t(XY) = {T1, T3}  

 Diffset (XY, X) = {T2} 

 Eclat/MaxEclat (Zaki et al. @KDD’97), VIPER(P. Shenoy et 
al.@SIGMOD’00), CHARM (Zaki & Hsiao@SDM’02) 



Further Improvements of Mining Methods 

 AFOPT  

 A “push-right” method for mining condensed frequent 
pattern (CFP) tree  

 Carpenter  

 Mine data sets with small rows but numerous columns 

 Construct a row-enumeration tree for efficient mining 



Visualization of Association Rules: Plane Graph 



Visualization of Association Rules: Rule Graph 



Visualization of Association Rules  
(SGI/MineSet 3.0) 



Mining Various Kinds of Association Rules 

 Mining multilevel association 

 Miming multidimensional association 

 Mining quantitative association  

 Mining interesting correlation patterns 



Mining Multiple-Level Association Rules 

 Items often form hierarchies 

 Flexible support settings  

 Items at the lower level are expected to have lower 
support 

 Exploration of shared multi-level mining (Agrawal & 
Srikant@VLB’95, Han & Fu@VLDB’95) 

uniform support 

Milk 

[support = 10%] 

2% Milk  

[support = 6%] 

Skim Milk  

[support = 4%] 

Level 1 

min_sup = 5% 

Level 2 

min_sup = 5% 

Level 1 

min_sup = 5% 

Level 2 

min_sup = 3% 

reduced support 



Multi-level Association: Redundancy Filtering 

 Some rules may be redundant due to “ancestor” 
relationships between items. 

 Example 

 milk  wheat bread    [support = 8%, confidence = 70%] 

 2% milk  wheat bread [support = 2%, confidence = 72%] 

 We say the first rule is an ancestor of the second rule. 

 A rule is redundant if its support is close to the “expected” 
value, based on the rule’s ancestor. 



Mining Multi-Dimensional Association 

 Single-dimensional rules: 

buys(X, “milk”)  buys(X, “bread”) 
 Multi-dimensional rules:  2 dimensions or predicates 

 Inter-dimension assoc. rules (no repeated predicates) 
age(X,”19-25”)  occupation(X,“student”)  buys(X, “coke”) 

 hybrid-dimension assoc. rules (repeated predicates) 
age(X,”19-25”)   buys(X, “popcorn”)  buys(X, “coke”) 

 Categorical Attributes: finite number of possible values, no 

ordering among values—data cube approach 

 Quantitative Attributes: numeric, implicit ordering among 

values—discretization, clustering, and gradient approaches 

 



Mining Quantitative Associations 

 Techniques can be categorized by how numerical 
attributes, such as age or salary are treated 

1. Static discretization based on predefined concept 

hierarchies (data cube methods) 

2. Dynamic discretization based on data distribution 

(quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)  

3. Clustering: Distance-based association (e.g., Yang & 

Miller@SIGMOD97)  

 one dimensional clustering then association 

4. Deviation: (such as Aumann and Lindell@KDD99) 

Sex = female => Wage: mean=$7/hr (overall mean = $9) 

 



Static Discretization of Quantitative Attributes 

 Discretized prior to mining using concept hierarchy. 

 Numeric values are replaced by ranges. 

 In relational database, finding all frequent k-predicate sets 

will require k or k+1 table scans. 

 Data cube is well suited for mining. 

 The cells of an n-dimensional  

cuboid correspond to the  

predicate sets. 

 Mining from data cubes 

can be much faster. 

(income) (age) 

() 

(buys) 

(age, income) (age,buys) (income,buys) 

(age,income,buys) 



Quantitative Association Rules 

age(X,”34-35”)  income(X,”30-50K”)  
       buys(X,”high resolution TV”) 

 Proposed by Lent, Swami and Widom ICDE’97 

 Numeric attributes are dynamically discretized 

 Such that the confidence or compactness of the rules 
mined is maximized 

 2-D quantitative association rules: Aquan1  Aquan2  Acat 

 Cluster adjacent                                             
association rules                                                         
to form general                                                             
rules using a 2-D grid 

 Example 



Mining Other Interesting Patterns 

 Flexible support constraints 

 Some items (e.g., diamond) may occur rarely but are 

valuable  

 Customized supmin specification and application 

 Top-K closed frequent patterns  

 Hard to specify supmin, but top-k with lengthmin is more 

desirable 

 Dynamically raise supmin in FP-tree construction and 

mining, and select most promising path to mine 



Interestingness Measure: Correlations (Lift) 

 play basketball   eat cereal [40%, 66.7%]  is misleading 

 The overall % of students eating cereal is 75% > 66.7%. 

 play basketball   not eat cereal [20%, 33.3%] is more accurate, 

although with lower support and confidence 

 Measure of dependent/correlated events: lift 

89.0
5000/3750*5000/3000

5000/2000
),( CBlift

Basketball Not basketball Sum (row) 

Cereal 2000 1750 3750 

Not cereal 1000 250 1250 

Sum(col.) 3000 2000 5000 
)()(

)(

BPAP

BAP
lift




33.1
5000/1250*5000/3000

5000/1000
),( CBlift



Are lift and 2  Good Measures of Correlation? 

 “Buy walnuts   buy milk [1%, 80%]”  is misleading 

 if 85% of customers buy milk 

 Support and confidence are not good to represent correlations 

 So many interestingness measures?  (Tan, Kumar, Sritastava @KDD’02) 

Milk No Milk Sum (row) 

Coffee m, c ~m, c c 

No Coffee m, ~c ~m, ~c ~c 

Sum(col.) m ~m  

)()(

)(

BPAP

BAP
lift




DB m, c ~m, c m~c ~m~c lift all-conf coh 2 

A1 1000 100 100 10,000 9.26 0.91 0.83 9055 

A2 100 1000 1000 100,000 8.44 0.09 0.05 670 

A3 1000 100 10000 100,000 9.18 0.09 0.09 8172 

A4 1000 1000 1000 1000 1 0.5 0.33 0 

)sup(_max_

)sup(
_

Xitem

X
confall 

|)(|

)sup(

Xuniverse

X
coh 



Which Measures Should Be Used? 

 lift and 2 are not 
good measures for 
correlations in large 
transactional DBs 

 all-conf or 
coherence could be 
good measures 
(Omiecinski@TKDE’03) 

 Both all-conf and 
coherence have the 
downward closure 
property  

 Efficient algorithms 
can be derived for 
mining (Lee et al. 
@ICDM’03sub) 



Constraint-based (Query-Directed) Mining 

 Finding all the patterns in a database autonomously? — 

unrealistic! 

 The patterns could be too many but not focused! 

 Data mining should be an interactive process  

 User directs what to be mined using a data mining 

query language (or a graphical user interface) 

 Constraint-based mining 

 User flexibility: provides constraints on what to be 

mined 

 System optimization: explores such constraints for 

efficient mining—constraint-based mining 



Constraints in Data Mining 

 Knowledge type constraint:  

 classification, association, etc. 

 Data constraint — using SQL-like queries  

 find product pairs sold together in stores in Chicago in 
Dec.’02 

 Dimension/level constraint 

 in relevance to region, price, brand, customer category 

 Rule (or pattern) constraint 

 small sales (price  < $10) triggers big sales (sum > 
$200) 

 Interestingness constraint 

 strong rules: min_support    3%, min_confidence   
60% 



Constrained Mining vs. Constraint-Based Search 

 Constrained mining vs. constraint-based search/reasoning 

 Both are aimed at reducing search space 

 Finding all patterns satisfying constraints vs. finding 
some (or one) answer in constraint-based search in AI 

 Constraint-pushing vs. heuristic search 

 It is an interesting research problem on how to integrate 
them 

 Constrained mining vs. query processing in DBMS 

 Database query processing requires to find all 

 Constrained pattern mining shares a similar philosophy 
as pushing selections deeply in query processing 



Anti-Monotonicity in Constraint Pushing 

 Anti-monotonicity 

 When an intemset S violates the 
constraint, so does any of its superset  

 sum(S.Price)  v  is anti-monotone 

 sum(S.Price)  v  is not anti-monotone 

 Example. C: range(S.profit)  15 is anti-

monotone 

 Itemset ab violates C 

 So does every superset of ab 

TID Transaction 

10 a, b, c, d, f 

20 b, c, d, f, g, h 

30 a, c, d, e, f 

40 c, e, f, g 

TDB (min_sup=2) 

Item Profit 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 



Monotonicity for Constraint Pushing 

 Monotonicity 

 When an intemset S satisfies the 

constraint, so does any of its 

superset  

 sum(S.Price)  v  is monotone 

 min(S.Price)  v  is monotone 

 Example. C: range(S.profit)  15 

 Itemset ab satisfies C 

 So does every superset of ab 

TID Transaction 

10 a, b, c, d, f 

20 b, c, d, f, g, h 

30 a, c, d, e, f 

40 c, e, f, g 

TDB (min_sup=2) 

Item Profit 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 



Succinctness 

 Succinctness: 

 Given A1, the set of items satisfying a succinctness 

constraint C, then any set S satisfying C is based on 

A1 , i.e., S contains a subset belonging to A1 

 Idea: Without looking at the transaction database, 

whether an itemset S satisfies constraint C can be 

determined based on the selection of items   

 min(S.Price)  v  is succinct 

 sum(S.Price)  v  is not succinct 

 Optimization: If C is succinct, C is pre-counting pushable 



The Apriori Algorithm — Example 

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D 

C1 

L1 

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2 

C2 C2 

Scan D 

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2



Naïve Algorithm: Apriori + Constraint  

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D 

C1 

L1 

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2 

C2 C2 

Scan D 

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint:  

Sum{S.price} < 5 



The Constrained Apriori Algorithm: Push 

an Anti-monotone Constraint Deep  

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D 

C1 

L1 

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2 

C2 C2 

Scan D 

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint:  

Sum{S.price} < 5 



The Constrained Apriori Algorithm: Push a 

Succinct Constraint Deep  

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D 

C1 

L1 

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2 

C2 C2 

Scan D 

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint:  

min{S.price } <= 1 

not immediately  
to be used 



Converting “Tough” Constraints 

 Convert tough constraints into anti-

monotone or monotone by properly 

ordering items 

 Examine C: avg(S.profit)  25 

 Order items in value-descending 

order 

 <a, f, g, d, b, h, c, e> 

 If an itemset afb violates C 

 So does afbh, afb* 

 It becomes anti-monotone! 

TID Transaction 

10 a, b, c, d, f 

20 b, c, d, f, g, h 

30 a, c, d, e, f 

40 c, e, f, g 

TDB (min_sup=2) 

Item Profit 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 



Strongly Convertible Constraints 

 avg(X)  25 is convertible anti-monotone w.r.t. 
item value descending order R: <a, f, g, d, b, 
h, c, e> 

 If an itemset af violates a constraint C, so 
does every itemset with af as prefix, such as 
afd  

 avg(X)  25 is convertible monotone w.r.t. item 
value ascending order R-1: <e, c, h, b, d, g, f, 
a> 

 If an itemset d satisfies a constraint C, so 
does itemsets df and dfa, which having d as 
a prefix 

 Thus, avg(X)  25 is strongly convertible 

Item Profit 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 



Can Apriori Handle Convertible Constraint? 

 A convertible, not monotone nor anti-monotone 
nor succinct constraint cannot be pushed deep 
into the an Apriori mining algorithm 

 Within the level wise framework, no direct 
pruning based on the constraint can be made 

 Itemset df violates constraint C: avg(X)>=25 

 Since adf satisfies C, Apriori needs df to 
assemble adf, df cannot be pruned 

 But it can be pushed into frequent-pattern 
growth framework! 

Item Value 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 



Mining With Convertible Constraints 

 C: avg(X) >= 25, min_sup=2 

 List items in every transaction in value descending 

order R: <a, f, g, d, b, h, c, e> 

 C is convertible anti-monotone w.r.t. R 

 Scan TDB once 

 remove infrequent items 

 Item h is dropped 

 Itemsets a and f are good, … 

 Projection-based mining 

 Imposing an appropriate order on item projection 

 Many tough constraints can be converted into 

(anti)-monotone 

TID Transaction 

10 a, f, d, b, c 

20 f, g, d, b, c 

30  a, f, d, c, e 

40  f, g, h, c, e 

TDB (min_sup=2) 

Item Value 

a 40 

f 30 

g 20 

d 10 

b 0 

h -10 

c -20 

e -30 



Handling Multiple Constraints 

 Different constraints may require different or even 

conflicting item-ordering 

 If there exists an order R s.t. both C1 and C2 are 

convertible w.r.t. R, then there is no conflict between 

the two convertible constraints 

 If there exists conflict on order of items 

 Try to satisfy one constraint first 

 Then using the order for the other constraint to 

mine frequent itemsets in the corresponding 

projected database 



What Constraints Are Convertible? 

Constraint 
Convertible anti-

monotone 
Convertible 
monotone 

Strongly 
convertible 

avg(S)  ,  v Yes Yes Yes 

median(S)  ,  v Yes Yes Yes 

sum(S)  v (items could be of any value, 
v  0) 

Yes No No 

sum(S)  v (items could be of any value, 
v  0) 

No Yes No 

sum(S)  v (items could be of any value, 
v  0) 

No Yes No 

sum(S)  v (items could be of any value, 
v  0) 

Yes No No 

…… 



Constraint-Based Mining—A General Picture 

Constraint Antimonotone Monotone Succinct 

v  S no yes yes 

S   V no yes yes 

S   V yes no yes 

min(S)  v no yes yes 

min(S)  v yes no yes 

max(S)  v yes no yes 

max(S)  v no yes yes 

count(S)  v yes  no weakly 

count(S)  v no yes weakly 

sum(S)  v ( a    S, a  0 ) yes no no 

sum(S)  v ( a    S, a  0 ) no yes no 

range(S)  v yes no no 

range(S)  v no yes no 

avg(S)  v,   { ,  ,   } convertible convertible no 

support(S)      yes no no 

support(S)       no yes no 



A Classification of Constraints 

Convertible 
anti-monotone 

Convertible 
monotone 

Strongly 

convertible 

Inconvertible 

Succinct 

Antimonotone 
Monotone 



 Classification   

 predicts categorical class labels (discrete or nominal) 

 classifies data (constructs a model) based on the 
training set and the values (class labels) in a 
classifying attribute and uses it in classifying new 
data 

 Prediction   

 models continuous-valued functions, i.e., predicts 
unknown or missing values  

 Typical applications 

 Credit approval 

 Target marketing 

 Medical diagnosis 

 Fraud detection 

Classification vs. Prediction 



Classification—A Two-Step Process  

 Model construction: describing a set of predetermined classes 

 Each tuple/sample is assumed to belong to a predefined class, 
as determined by the class label attribute 

 The set of tuples used for model construction is training set 

 The model is represented as classification rules, decision trees, 
or mathematical formulae 

 Model usage: for classifying future or unknown objects 

 Estimate accuracy of the model 

 The known label of test sample is compared with the 
classified result from the model 

 Accuracy rate is the percentage of test set samples that are 
correctly classified by the model 

 Test set is independent of training set, otherwise over-fitting 
will occur 

 If the accuracy is acceptable, use the model to classify data 
tuples whose class labels are not known 



Process (1): Model Construction 

Training 
Data 

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification 
Algorithms 

IF rank = ‘professor’ 
OR years > 6 
THEN tenured = ‘yes’  

Classifier 
(Model) 



Process (2): Using the Model in Prediction  

Classifier 

Testing 
Data 

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data 

(Jeff, Professor, 4) 

Tenured? 



Supervised vs. Unsupervised Learning 

 Supervised learning (classification) 

 Supervision: The training data (observations, 

measurements, etc.) are accompanied by labels 

indicating the class of the observations 

 New data is classified based on the training set 

 Unsupervised learning (clustering) 

 The class labels of training data is unknown 

 Given a set of measurements, observations, etc. 

with the aim of establishing the existence of classes 

or clusters in the data 



Issues: Data Preparation 

 Data cleaning 

 Preprocess data in order to reduce noise and handle 

missing values 

 Relevance analysis (feature selection) 

 Remove the irrelevant or redundant attributes 

 Data transformation 

 Generalize and/or normalize data 



Issues: Evaluating Classification Methods 

 Accuracy 

 classifier accuracy: predicting class label 

 predictor accuracy: guessing value of predicted 
attributes 

 Speed 

 time to construct the model (training time) 

 time to use the model (classification/prediction time) 

 Robustness: handling noise and missing values 

 Scalability: efficiency in disk-resident databases  

 Interpretability 

 understanding and insight provided by the model 

 Other measures, e.g., goodness of rules, such as decision 
tree size or compactness of classification rules 



Decision Tree Induction: Training Dataset 

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

This 
follows an  
example 
of 
Quinlan’s 
ID3 
(Playing 
Tennis) 



Output: A Decision Tree for “buys_computer” 

age? 

overcast 

student? credit rating? 

<=30 >40 

no yes yes 

yes 

31..40 

fair excellent yes no 



Algorithm for Decision Tree Induction 

 Basic algorithm (a greedy algorithm) 

 Tree is constructed in a top-down recursive divide-and-conquer 
manner 

 At start, all the training examples are at the root 

 Attributes are categorical (if continuous-valued, they are 
discretized in advance) 

 Examples are partitioned recursively based on selected attributes 

 Test attributes are selected on the basis of a heuristic or 
statistical measure (e.g., information gain) 

 Conditions for stopping partitioning 

 All samples for a given node belong to the same class 

 There are no remaining attributes for further partitioning – 
majority voting is employed for classifying the leaf 

 There are no samples left 



Attribute Selection Measure: 
Information Gain (ID3/C4.5) 

 Select the attribute with the highest information gain 

 Let pi be the probability that an arbitrary tuple in D 
belongs to class Ci, estimated by |Ci, D|/|D| 

 Expected information (entropy) needed to classify a tuple 
in D: 

 

 Information needed (after using A to split D into v 
partitions) to classify D: 

 

 Information gained by branching on attribute A 
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Attribute Selection: Information Gain 

 Class P: buys_computer = 
“yes” 

 Class N: buys_computer = “no” 

            means “age <=30” has 5 
out of 14 samples, with 2 yes’es  
and 3 no’s.   Hence 

 

 

Similarly, 

age pi ni I(pi, ni)

<=30 2 3 0.971

31…40 4 0 0

>40 3 2 0.971
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ratingcreditGain

studentGain

incomeGain

246.0)()()(  DInfoDInfoageGain age
age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Computing Information-Gain for 
Continuous-Value Attributes 

 Let attribute A be a continuous-valued attribute 

 Must determine the best split point for A 

 Sort the value A in increasing order 

 Typically, the midpoint between each pair of adjacent 

values is considered as a possible split point 

 (ai+ai+1)/2 is the midpoint between the values of ai and ai+1 

 The point with the minimum expected information 

requirement for A is selected as the split-point for A 

 Split: 

 D1 is the set of tuples in D satisfying A ≤ split-point, and 

D2 is the set of tuples in D satisfying A > split-point 



Gain Ratio for Attribute Selection (C4.5) 

 Information gain measure is biased towards attributes 

with a large number of values 

 C4.5 (a successor of ID3) uses gain ratio to overcome the 

problem (normalization to information gain) 

 

 

 GainRatio(A) = Gain(A)/SplitInfo(A) 

 Ex. 

 gain_ratio(income) = 0.029/0.926 = 0.031 

 The attribute with the maximum gain ratio is selected as 

the splitting attribute 
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Gini index (CART, IBM IntelligentMiner) 

 If a data set D contains examples from n classes, gini index, gini(D) is 

defined as 

 

     

     where pj is the relative frequency of class j in D 
 If a data set D  is split on A into two subsets D1 and D2, the gini index 

gini(D) is defined as 

 

 

 Reduction in Impurity: 

 

 

 The attribute provides the smallest ginisplit(D) (or the largest reduction 

in impurity) is chosen to split the node (need to enumerate all the 
possible splitting points for each attribute) 
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Gini index (CART, IBM IntelligentMiner) 

 Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no” 
 

 

 Suppose the attribute income partitions D into 10 in D1: {low, 

medium} and 4 in D2 

 

 

 

but gini{medium,high} is 0.30 and thus the best since it is the lowest 

 All attributes are assumed continuous-valued 

 May need other tools, e.g., clustering, to get the possible split values 

 Can be modified for categorical attributes 
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Comparing Attribute Selection Measures 

 The three measures, in general, return good results but 

 Information gain:  

 biased towards multivalued attributes 

 Gain ratio:  

 tends to prefer unbalanced splits in which one 

partition is much smaller than the others 

 Gini index:  

 biased to multivalued attributes 

 has difficulty when # of classes is large 

 tends to favor tests that result in equal-sized 

partitions and purity in both partitions 



Other Attribute Selection Measures 

 CHAID: a popular decision tree algorithm, measure based on χ2 test 

for independence 

 C-SEP: performs better than info. gain and gini index in certain cases 

 G-statistics: has a close approximation to χ2 distribution  

 MDL (Minimal Description Length) principle (i.e., the simplest solution 

is preferred):  

 The best tree as the one that requires the fewest # of bits to both 

(1) encode the tree, and (2) encode the exceptions to the tree 

 Multivariate splits (partition based on multiple variable combinations) 

 CART: finds multivariate splits based on a linear comb. of attrs. 

 Which attribute selection measure is the best? 

  Most give good results, none is significantly superior than others 



Overfitting and Tree Pruning 

 Overfitting:  An induced tree may overfit the training data  

 Too many branches, some may reflect anomalies due to noise or 

outliers 

 Poor accuracy for unseen samples 

 Two approaches to avoid overfitting  

 Prepruning: Halt tree construction early—do not split a node if this 

would result in the goodness measure falling below a threshold 

 Difficult to choose an appropriate threshold 

 Postpruning: Remove branches from a “fully grown” tree—get a 

sequence of progressively pruned trees 

 Use a set of data different from the training data to decide 

which is the “best pruned tree” 



Enhancements to Basic Decision Tree Induction 

 Allow for continuous-valued attributes 

 Dynamically define new discrete-valued attributes that 
partition the continuous attribute value into a discrete 

set of intervals 

 Handle missing attribute values 

 Assign the most common value of the attribute 

 Assign probability to each of the possible values 

 Attribute construction 

 Create new attributes based on existing ones that are 

sparsely represented 

 This reduces fragmentation, repetition, and replication 



Classification in Large Databases 

 Classification—a classical problem extensively studied by 

statisticians and machine learning researchers 

 Scalability: Classifying data sets with millions of examples 

and hundreds of attributes with reasonable speed 

 Why decision tree induction in data mining? 

 relatively faster learning speed (than other classification 
methods) 

 convertible to simple and easy to understand 
classification rules 

 can use SQL queries for accessing databases 

 comparable classification accuracy with other methods 



Scalable Decision Tree Induction Methods 

 SLIQ (EDBT’96 — Mehta et al.) 

 Builds an index for each attribute and only class list and 
the current attribute list reside in memory 

 SPRINT (VLDB’96 — J. Shafer et al.) 

 Constructs an attribute list data structure  

 PUBLIC (VLDB’98 — Rastogi & Shim) 

 Integrates tree splitting and tree pruning: stop growing 
the tree earlier 

 RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti) 

 Builds an AVC-list (attribute, value, class label) 

 BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & Loh) 

 Uses bootstrapping to create several small samples 



Scalability Framework for RainForest 

 Separates the scalability aspects from the criteria that 

determine the quality of the tree  

 Builds an AVC-list: AVC (Attribute, Value, Class_label)  

 AVC-set  (of an attribute X ) 

 Projection of training dataset onto the attribute X and 

class label where counts of individual class label are 

aggregated 

 AVC-group  (of a node n ) 

 Set of AVC-sets of all predictor attributes at the node n  



Rainforest:  Training Set and Its AVC Sets  

student Buy_Computer 

yes no 

yes 6 1 

no 3 4 

Age Buy_Computer 

yes no 

<=30 3 2 

31..40 4 0 

>40 3 2 

Credit 

rating 

Buy_Computer 

yes no 

fair 6 2 

excellent 3 3 

age income studentcredit_ratinguys_compu

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

AVC-set on income AVC-set on Age 

AVC-set on Student 

Training Examples 
income Buy_Computer 

yes no 

high 2 2 

medium 4 2 

low 3 1 

AVC-set on  
credit_rating 



Data Cube-Based Decision-Tree Induction 

 Integration of generalization with decision-tree induction  

 Classification at primitive concept levels 

 E.g., precise temperature, humidity, outlook, etc. 

 Low-level concepts, scattered classes, bushy 

classification-trees 

 Semantic interpretation problems 

 Cube-based multi-level classification 

 Relevance analysis at multi-levels 

 Information-gain analysis with dimension + level 



BOAT (Bootstrapped Optimistic Algorithm for Tree 
Construction) 

 Use a statistical technique called bootstrapping to 

create several smaller samples (subsets), each fits in 

memory 

 Each subset is used to create a tree, resulting in several 

trees  

 These trees are examined and used to construct a new 

tree T’ 

 It turns out that T’ is very close to the tree that would 

be generated using the whole data set together 

 Adv: requires only two scans of DB, an incremental alg. 

 



Presentation of Classification Results 



Visualization of a Decision Tree in SGI/MineSet 3.0 



Interactive Visual Mining by Perception-Based 

Classification (PBC) 



Bayesian Classification: Why? 

 A statistical classifier: performs probabilistic prediction, 
i.e., predicts class membership probabilities 

 Foundation: Based on Bayes’ Theorem.  
 Performance: A simple Bayesian classifier, naïve Bayesian 

classifier, has comparable performance with decision tree 
and selected neural network classifiers 

 Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is 
correct — prior knowledge can be combined with observed 
data 

 Standard: Even when Bayesian methods are 
computationally intractable, they can provide a standard 
of optimal decision making against which other methods 
can be measured 



Bayesian Theorem: Basics 

 Let X be a data sample (“evidence”): class label is unknown 

 Let H be a hypothesis that X belongs to class C  

 Classification is to determine P(H|X), the probability that 

the hypothesis holds given the observed data sample X 

 P(H) (prior probability), the initial probability 

 E.g., X will buy computer, regardless of age, income, … 

 P(X): probability that sample data is observed 

 P(X|H) (posteriori probability), the probability of observing 

the sample X, given that the hypothesis holds 

 E.g., Given that X will buy computer, the prob. that X is 

31..40, medium income 



Bayesian Theorem 

 Given training data X, posteriori probability of a 

hypothesis H, P(H|X), follows the Bayes theorem 

    

 

 Informally, this can be written as  

  posteriori = likelihood x prior/evidence 

 Predicts X belongs to C2 iff the probability P(Ci|X) is the 

highest among all the P(Ck|X) for all the k classes 

 Practical difficulty: require initial knowledge of many 

probabilities, significant computational cost 
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Towards Naïve Bayesian Classifier 

 Let D be a training set of tuples and their associated class 
labels, and each tuple is represented by an n-D attribute 
vector X = (x1, x2, …, xn) 

 Suppose there are m classes C1, C2, …, Cm. 

 Classification is to derive the maximum posteriori, i.e., the 
maximal P(Ci|X) 

 This can be derived from Bayes’ theorem 

 

 

 Since P(X) is constant for all classes, only                                 

 

needs to be maximized 
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Derivation of Naïve Bayes Classifier  

 A simplified assumption: attributes are conditionally 
independent (i.e., no dependence relation between 
attributes): 

 

 This greatly reduces the computation cost: Only counts 
the class distribution 

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having 
value xk for Ak divided by |Ci, D| (# of tuples of Ci in D) 

 If Ak is continous-valued, P(xk|Ci) is usually computed 
based on Gaussian distribution with a mean μ and 
standard deviation σ 

 

and P(xk|Ci) is  
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Naïve Bayesian Classifier: Training Dataset 

Class: 

C1:buys_computer = ‘yes’ 
C2:buys_computer = ‘no’ 
 

Data sample  

X = (age <=30, 

Income = medium, 

Student = yes 

Credit_rating = Fair) 

age income studentcredit_ratinguys_compu

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no



Naïve Bayesian Classifier:  An Example 

 P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643 

                    P(buys_computer = “no”) = 5/14= 0.357 
 

 Compute P(X|Ci) for each class 
     P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222 
     P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6 
     P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444 
     P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4 
     P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667 
     P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2 
     P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667 
     P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4 
 
  X = (age <= 30 , income = medium, student = yes, credit_rating = fair) 

 

 P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 
                P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019 
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028 
               P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007 
 

Therefore,  X belongs to class (“buys_computer = yes”)   



Avoiding the 0-Probability Problem 

 Naïve Bayesian prediction requires each conditional prob. be non-
zero.  Otherwise, the predicted prob. will be zero 

 

  

 

 Ex. Suppose a dataset with 1000 tuples, income=low (0), income= 
medium (990), and income = high (10),  

 Use Laplacian correction (or Laplacian estimator) 

 Adding 1 to each case 

Prob(income = low) = 1/1003 

Prob(income = medium) = 991/1003 

Prob(income = high) = 11/1003 

 The “corrected” prob. estimates are close to their “uncorrected” 
counterparts 





n

k
CixkPCiXP

1
)|()|(



Naïve Bayesian Classifier: Comments 

 Advantages  

 Easy to implement  

 Good results obtained in most of the cases 

 Disadvantages 

 Assumption: class conditional independence, therefore 
loss of accuracy 

 Practically, dependencies exist among variables  
 E.g.,  hospitals: patients: Profile: age, family history, etc.  

 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.  

 Dependencies among these cannot be modeled by Naïve 
Bayesian Classifier 

 How to deal with these dependencies? 

 Bayesian Belief Networks  



Bayesian Belief Networks 

 Bayesian belief network allows a subset of the variables 

conditionally independent 

 A graphical model of causal relationships 

 Represents dependency among the variables  

 Gives a specification of joint probability distribution  

X Y 

Z 
P 

 Nodes: random variables 

 Links: dependency 

 X and Y are the parents of Z, and Y is 

the parent of P 

 No dependency between Z and P 

 Has no loops or cycles 



Bayesian Belief Network: An Example 

Family 

History 

LungCancer 

PositiveXRay 

Smoker 

Emphysema 

Dyspnea 

LC 

~LC 

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S) 

0.8 

0.2 

0.5 

0.5 

0.7 

0.3 

0.1 

0.9 

Bayesian Belief Networks 

The conditional probability table 
(CPT) for variable LungCancer: 
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CPT shows the conditional probability for 
each possible combination of its parents 

Derivation of the probability of a 
particular combination of values of X, 
from CPT: 



Training Bayesian Networks 

 Several scenarios: 

 Given both the network structure and all variables 
observable: learn only the CPTs 

 Network structure known, some hidden variables: 
gradient descent (greedy hill-climbing) method, 
analogous to neural network learning 

 Network structure unknown, all variables observable: 
search through the model space to reconstruct 
network topology  

 Unknown structure, all hidden variables: No good 
algorithms known for this purpose 

 Ref. D. Heckerman: Bayesian networks for data mining 



Using IF-THEN Rules for Classification 

 Represent the knowledge in the form of IF-THEN rules 

R:  IF age = youth AND student = yes  THEN buys_computer = yes 

 Rule antecedent/precondition vs. rule consequent 

 Assessment of a rule: coverage and accuracy  

 ncovers = # of tuples covered by R 

 ncorrect = # of tuples correctly classified by R 

coverage(R) = ncovers /|D|   /* D: training data set */ 

accuracy(R) = ncorrect / ncovers 

 If more than one rule is triggered, need conflict resolution 

 Size ordering: assign the highest priority to the triggering rules that has 

the “toughest” requirement (i.e., with the most attribute test) 

 Class-based ordering: decreasing order of prevalence or misclassification 
cost per class 

 Rule-based ordering (decision list): rules are organized into one long 

priority list, according to some measure of rule quality or by experts 



age? 

student? credit rating? 

<=30 >40 

no yes yes 

yes 

31..40 

fair excellent yes no 

 Example: Rule extraction from our buys_computer decision-tree 

IF age = young AND student = no             THEN buys_computer = no 

IF age = young AND student = yes            THEN buys_computer = yes 

IF age = mid-age        THEN buys_computer = yes 

IF age = old AND credit_rating = excellent  THEN buys_computer = yes 

IF age = young AND credit_rating = fair     THEN buys_computer = no 

Rule Extraction from a Decision Tree 

 Rules are easier to understand than large trees 

 One rule is created for each path from the root 

to a leaf 

 Each attribute-value pair along a path forms a 

conjunction: the leaf holds the class prediction  

 Rules are mutually exclusive and exhaustive 



Rule Extraction from the Training Data 

 Sequential covering algorithm: Extracts rules directly from training data 

 Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER 

 Rules are learned sequentially, each for a given class Ci will cover many 

tuples of Ci but none (or few) of the tuples of other classes 

 Steps:  

 Rules are learned one at a time 

 Each time a rule is learned, the tuples covered by the rules are 

removed 

 The process repeats on the remaining tuples unless termination 

condition, e.g., when no more training examples or when the quality 

of a rule returned is below a user-specified threshold 

 Comp. w. decision-tree induction: learning a set of rules simultaneously 



How to Learn-One-Rule? 

 Star with the most general rule possible: condition = empty 

 Adding new attributes by adopting a greedy depth-first strategy 

 Picks the one that most improves the rule quality 

 Rule-Quality measures: consider both coverage and accuracy 

 Foil-gain (in FOIL & RIPPER): assesses info_gain by extending 

condition 

 

It favors rules that have high accuracy and cover many positive tuples 

 Rule pruning based on an independent set of test tuples 

 

 

Pos/neg are # of positive/negative tuples covered by R. 

If FOIL_Prune is higher for the pruned version of R, prune R 
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 Classification:   

 predicts categorical class labels 

 E.g., Personal homepage classification 

 xi = (x1, x2, x3, …), yi = +1 or –1 

 x1 : # of a word “homepage” 
 x2 : # of a word “welcome” 

 Mathematically 

 x  X = n, y  Y = {+1, –1} 

 We want a function f: X  Y  

Classification: A Mathematical Mapping 



Linear Classification 

 Binary Classification 
problem 

 The data above the red 
line belongs to class ‘x’ 

 The data below red line 
belongs to class ‘o’ 

 Examples: SVM, 
Perceptron, Probabilistic 
Classifiers 
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Discriminative Classifiers 

 Advantages 

 prediction accuracy is generally high  
 As compared to Bayesian methods – in general 

 robust, works when training examples contain errors 

 fast evaluation of the learned target function 
 Bayesian networks are normally slow  

 Criticism 

 long training time 

 difficult to understand the learned function (weights) 
 Bayesian networks can be used easily for pattern discovery 

 not easy to incorporate domain knowledge 
 Easy in the form of priors on the data or distributions 



Perceptron & Winnow 

• Vector: x, w 

• Scalar: x, y, w 

Input: {(x1, y1), …} 

Output: classification function f(x) 

 f(xi) > 0 for yi = +1 

 f(xi) < 0 for yi = -1 

f(x) => wx + b = 0 

 or w1x1+w2x2+b = 0 

 

x1 

x2 

• Perceptron: update W 
additively 

• Winnow: update W 
multiplicatively 



Classification by Backpropagation 

 Backpropagation: A neural network learning algorithm  

 Started by psychologists and neurobiologists to develop 

and test computational analogues of neurons 

 A neural network: A set of connected input/output units 

where each connection has a weight associated with it 

 During the learning phase, the network learns by 

adjusting the weights so as to be able to predict the 

correct class label of the input tuples 

 Also referred to as connectionist learning due to the 

connections between units 



Neural Network as a Classifier 

 Weakness 
 Long training time  

 Require a number of parameters typically best determined 
empirically, e.g., the network topology or ̀ `structure."  

 Poor interpretability: Difficult to interpret the symbolic meaning 
behind the learned weights and of ̀ `hidden units" in the network 

 Strength 
 High tolerance to noisy data  

 Ability to classify untrained patterns  

 Well-suited for continuous-valued inputs and outputs 

 Successful on a wide array of real-world data 

 Algorithms are inherently parallel 

 Techniques have recently been developed for the extraction of 
rules from trained neural networks 



A  Neuron (= a perceptron) 

 The n-dimensional input vector x is mapped into variable y by 
means of the scalar product and a nonlinear function mapping 
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A Multi-Layer Feed-Forward Neural Network  

Output layer 

Input layer 

Hidden layer 

Output vector 

Input vector: X 
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How A Multi-Layer Neural Network Works? 

 The inputs to the network correspond to the attributes measured 

for each training tuple  

 Inputs are fed simultaneously into the units making up the input 

layer 

 They are then weighted and fed simultaneously to a hidden layer 

 The number of hidden layers is arbitrary, although usually only one  

 The weighted outputs of the last hidden layer are input to units 

making up the output layer, which emits the network's prediction 

 The network is feed-forward in that none of the weights cycles 

back to an input unit or to an output unit of a previous layer 

 From a statistical point of view, networks perform nonlinear 

regression: Given enough hidden units and enough training 

samples, they can closely approximate any function 



Defining a Network Topology 

 First decide the network topology: # of units in the 

input layer, # of hidden layers (if > 1), # of units in each 
hidden layer, and # of units in the output layer 

 Normalizing the input values for each attribute measured in 

the training tuples to [0.0—1.0] 

 One input unit per domain value, each initialized to 0 

 Output, if for classification and more than two classes, 

one output unit per class is used 

 Once a network has been trained and its accuracy is 

unacceptable, repeat the training process with a different 
network topology or a different set of initial weights 



Backpropagation 

 Iteratively process a set of training tuples & compare the network's 

prediction with the actual known target value 

 For each training tuple, the weights are modified to minimize the 

mean squared error between the network's prediction and the 

actual target value  

 Modifications are made in the “backwards” direction: from the output 
layer, through each hidden layer down to the first hidden layer, hence 

“backpropagation” 
 Steps 

 Initialize weights (to small random #s) and biases in the network 

 Propagate the inputs forward (by applying activation function)  

 Backpropagate the error (by updating weights and biases) 

 Terminating condition (when error is very small, etc.) 



Backpropagation and Interpretability 

 Efficiency of backpropagation: Each epoch (one interation through the 

training set) takes O(|D| * w), with |D| tuples and w weights, but # of 

epochs can be exponential to n, the number of inputs, in the worst 

case 

  Rule extraction from networks: network pruning 

 Simplify the network structure by removing weighted links that 

have the least effect on the trained network 

 Then perform link, unit, or activation value clustering 

 The set of input and activation values are studied to derive rules 

describing the relationship between the input and hidden unit 

layers 

 Sensitivity analysis: assess the impact that a given input variable has 

on a network output.  The knowledge gained from this analysis can be 

represented in rules 

 



SVM—Support Vector Machines 

 A new classification method for both linear and nonlinear 

data 

 It uses a nonlinear mapping to transform the original 

training data into a higher dimension 

 With the new dimension, it searches for the linear optimal 

separating hyperplane (i.e., “decision boundary”) 
 With an appropriate nonlinear mapping to a sufficiently 

high dimension, data from two classes can always be 

separated by a hyperplane 

 SVM finds this hyperplane using support vectors 

(“essential” training tuples) and margins (defined by the 
support vectors) 



SVM—History and Applications 

 Vapnik and colleagues (1992)—groundwork from Vapnik 

& Chervonenkis’ statistical learning theory in 1960s 
 Features: training can be slow but accuracy is high owing 

to their ability to model complex nonlinear decision 

boundaries (margin maximization) 

 Used both for classification and prediction 

 Applications:  

 handwritten digit recognition, object recognition, 

speaker identification, benchmarking time-series 

prediction tests  



SVM—General Philosophy 

Support Vectors 

Small Margin Large Margin 



SVM—Margins and Support Vectors 



SVM—When Data Is Linearly Separable 

m 

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples 
associated with the class labels yi 

There are infinite lines (hyperplanes) separating the two classes but we want to 
find the best one (the one that minimizes classification error on unseen data) 

SVM searches for the hyperplane with the largest margin, i.e., maximum 
marginal hyperplane (MMH) 



SVM—Linearly Separable 

 A separating hyperplane can be written as 

W ● X + b = 0 

where W={w1, w2, …, wn} is a weight vector and b a scalar (bias) 

 For 2-D it can be written as 

w0 + w1 x1 + w2 x2 = 0 

 The hyperplane defining the sides of the margin:  

H1: w0 + w1 x1 + w2 x2 ≥ 1    for yi = +1, and 

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1 

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the  

sides defining the margin) are support vectors 

 This becomes a constrained (convex) quadratic optimization 

problem: Quadratic objective function and linear constraints  

Quadratic Programming (QP)  Lagrangian multipliers 



Why Is SVM Effective on High Dimensional Data? 

 The complexity of trained classifier is characterized by the # of 

support vectors rather than the dimensionality of the data 

 The support vectors are the essential or critical training examples —
they lie closest to the decision boundary (MMH) 

 If all other training examples are removed and the training is 

repeated, the same separating hyperplane would be found 

 The number of support vectors found can be used to compute an 

(upper) bound on the expected error rate of the SVM classifier, which 

is independent of the data dimensionality 

 Thus, an SVM with a small number of support vectors can have good 

generalization, even when the dimensionality of the data is high 



SVM—Linearly Inseparable 

 Transform the original input data into a higher dimensional 

space 

 

 

 

 

 

 

 

 Search for a linear separating hyperplane in the new space 

A1

A2



SVM—Kernel functions 

 Instead of computing the dot product on the transformed data tuples, 

it is mathematically equivalent to instead applying a kernel function 

K(Xi, Xj) to the original data, i.e., K(Xi, Xj) = Φ(Xi) Φ(Xj)  

 Typical Kernel Functions 

 

 

 

 

 

 

 SVM can also be used for classifying multiple (> 2) classes and for 

regression analysis (with additional user parameters) 



Scaling SVM by Hierarchical Micro-Clustering 

 SVM is not scalable to the number of data objects in terms of 

training time and memory usage 

 “Classifying Large Datasets Using SVMs with Hierarchical Clusters 
Problem” by Hwanjo Yu, Jiong Yang, Jiawei Han, KDD’03 

 CB-SVM (Clustering-Based SVM) 

 Given limited amount of system resources (e.g., memory), 

maximize the SVM performance in terms of accuracy and the 

training speed 

 Use micro-clustering to effectively reduce the number of points 

to be considered 

 At deriving support vectors, de-cluster micro-clusters near 

“candidate vector” to ensure high classification accuracy 



CB-SVM: Clustering-Based SVM 

 Training data sets may not even fit in memory 

 Read the data set once (minimizing disk access) 

 Construct a statistical summary of the data (i.e., hierarchical 

clusters) given a limited amount of memory 

 The statistical summary maximizes the benefit of learning SVM 

 The summary plays a role in indexing SVMs 

 Essence of Micro-clustering (Hierarchical indexing structure) 

 Use micro-cluster hierarchical indexing structure  

 provide finer samples closer to the boundary and coarser 

samples farther from the boundary 

 Selective de-clustering to ensure high accuracy 



CF-Tree: Hierarchical Micro-cluster 



CB-SVM Algorithm: Outline 

 Construct two CF-trees from positive and negative data 
sets independently 

 Need one scan of the data set 

 Train an SVM from the centroids of the root entries 

 De-cluster the entries near the boundary into the next 
level 

 The children entries de-clustered from the parent 
entries are accumulated into the training set with the 
non-declustered parent entries 

 Train an SVM again from the centroids of the entries in 
the training set 

 Repeat until nothing is accumulated  



Selective Declustering 

 CF tree is a suitable base structure for selective declustering 

 De-cluster only the cluster Ei such that 

 Di – Ri < Ds, where Di is the distance from the boundary to 

the center point of Ei and Ri is the radius of Ei 

 Decluster only the cluster whose subclusters have 

possibilities to be the support cluster of the boundary 

 “Support cluster”: The cluster whose centroid is a 
support vector 



Experiment on Synthetic Dataset 



Experiment on a Large Data Set 



SVM vs. Neural Network 

 SVM  

 Relatively new concept 

 Deterministic algorithm 

 Nice Generalization 

properties 

 Hard to learn – learned 

in batch mode using 

quadratic programming 

techniques 

 Using kernels can learn 

very complex functions 

 Neural Network 

 Relatively old 

 Nondeterministic 
algorithm 

 Generalizes well but 
doesn’t have strong 
mathematical foundation 

 Can easily be learned in 
incremental fashion 

 To learn complex 
functions—use multilayer 
perceptron (not that 
trivial) 



Associative Classification 

 Associative classification 

 Association rules are generated and analyzed for use in classification 

 Search for strong associations between frequent patterns 

(conjunctions of attribute-value pairs) and class labels 

 Classification: Based on evaluating a set of rules in the form of  

P1 ^ p2 … ^ pl  “Aclass = C” (conf, sup) 
 Why effective?   

 It explores highly confident associations among multiple attributes 

and may overcome some constraints introduced by decision-tree 

induction, which considers only one attribute at a time 

 In many studies, associative classification has been found to be more 

accurate than some traditional classification methods, such as C4.5 



Typical Associative Classification Methods 

 CBA  

 Mine association possible rules in the form of 

 Cond-set (a set of attribute-value pairs)  class label 

 Build classifier: Organize rules according to decreasing precedence 

based on confidence and then support 

 CMAR  

 Classification: Statistical analysis on multiple rules 

 CPAR  

 Generation of predictive rules (FOIL-like analysis) 

 High efficiency, accuracy similar to CMAR 

 RCBT  

 Explore high-dimensional classification, using top-k rule groups 

 Achieve high classification accuracy and high run-time efficiency  



A Closer Look at CMAR 

 CMAR  

 Efficiency: Uses an enhanced FP-tree that maintains the distribution of 
class labels among tuples satisfying each frequent itemset 

 Rule pruning whenever a rule is inserted into the tree 

 Given two rules, R1 and R2, if the antecedent of R1 is more general 
than that of R2 and conf(R1) ≥ conf(R2), then R2 is pruned 

 Prunes rules for which the rule antecedent and class are not 
positively correlated, based on a χ2 test of statistical significance 

 Classification based on generated/pruned rules 

 If only one rule satisfies tuple X, assign the class label of the rule 

 If a rule set S satisfies X, CMAR  

 divides S into groups according to class labels 

 uses a weighted χ2 measure to find the strongest group of rules, 
based on the statistical correlation of rules within a group 

 assigns X the class label of the strongest group 



Associative Classification May Achieve High Accuracy 
and Efficiency (Cong et al. SIGMOD05) 



Lazy vs. Eager Learning 

 Lazy vs. eager learning 

 Lazy learning (e.g., instance-based learning): Simply 
stores training data (or only minor processing) and 
waits until it is given a test tuple 

 Eager learning (the above discussed methods): Given a 
set of training set, constructs a classification model 
before receiving new (e.g., test) data to classify 

 Lazy: less time in training but more time in predicting 

 Accuracy 

 Lazy method effectively uses a richer hypothesis space 
since it uses many local linear functions to form its 
implicit global approximation to the target function 

 Eager: must commit to a single hypothesis that covers 
the entire instance space 



Lazy Learner: Instance-Based Methods 

 Instance-based learning:  

 Store training examples and delay the processing 
(“lazy evaluation”) until a new instance must be 
classified 

 Typical approaches 

 k-nearest neighbor approach 

 Instances represented as points in a Euclidean 
space. 

 Locally weighted regression 

 Constructs local approximation 

 Case-based reasoning 

 Uses symbolic representations and knowledge-
based inference 



The k-Nearest Neighbor Algorithm 

 All instances correspond to points in the n-D space 

 The nearest neighbor are defined in terms of 
Euclidean distance, dist(X1, X2) 

 Target function could be discrete- or real- valued 

 For discrete-valued, k-NN returns the most common 
value among the k training examples nearest to xq 

 Vonoroi diagram: the decision surface induced by 1-
NN for a typical set of training examples 
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Discussion on the k-NN Algorithm 

 k-NN for real-valued prediction for a given unknown tuple 

 Returns the mean values of the k nearest neighbors 

 Distance-weighted nearest neighbor algorithm 

 Weight the contribution of each of the k neighbors 

according to their distance to the query xq 

 Give greater weight to closer neighbors 

 Robust to noisy data by averaging k-nearest neighbors 

 Curse of dimensionality: distance between neighbors could 

be dominated by irrelevant attributes    

 To overcome it, axes stretch or elimination of the least 

relevant attributes 
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Case-Based Reasoning (CBR) 

 CBR: Uses a database of problem solutions to solve new problems 

 Store symbolic description (tuples or cases)—not points in a Euclidean 

space 

 Applications: Customer-service (product-related diagnosis), legal ruling 

 Methodology 

 Instances represented by rich symbolic descriptions (e.g., function 

graphs) 

 Search for similar cases, multiple retrieved cases may be combined 

 Tight coupling between case retrieval, knowledge-based reasoning, 

and problem solving 

 Challenges 

 Find a good similarity metric  

 Indexing based on syntactic similarity measure,  and when failure, 

backtracking, and adapting to additional cases 



Genetic Algorithms (GA) 

 Genetic Algorithm: based on an analogy to biological evolution 

 An initial population is created consisting of randomly generated rules 

 Each rule is represented by a string of bits 

 E.g., if A1 and ¬A2 then C2 can be encoded as 100  

 If an attribute has k > 2 values, k bits can be used  

 Based on the notion of survival of the fittest, a new population is 

formed to consist of the fittest rules and their offsprings   

 The fitness of a rule is represented by its classification accuracy on a 

set of training examples 

 Offsprings are generated by crossover and mutation 

 The process continues until a population P evolves when each rule in P 
satisfies a prespecified threshold 

 Slow but easily parallelizable 



Rough Set Approach 

 Rough sets are used to approximately or “roughly” define 
equivalent classes  

 A rough set for a given class C is approximated by two sets: a lower 

approximation (certain to be in C) and an upper approximation 

(cannot be described as not belonging to C)  

 Finding the minimal subsets (reducts) of attributes for feature 

reduction is NP-hard but a discernibility matrix (which stores the 

differences between attribute values for each pair of data tuples) is 

used to reduce the computation intensity  



Fuzzy Set 
Approaches 

 Fuzzy logic uses truth values between 0.0 and 1.0 to 
represent the degree of membership (such as using 
fuzzy membership graph) 

 Attribute values are converted to fuzzy values 

 e.g., income is mapped into the discrete categories 
{low, medium, high} with fuzzy values calculated 

 For a given new sample, more than one fuzzy value may 
apply 

 Each applicable rule contributes a vote for membership 
in the categories 

 Typically, the truth values for each predicted category 
are summed, and these sums are combined 



What Is Prediction? 

 (Numerical) prediction is similar to classification 

 construct a model 

 use model to predict continuous or ordered  value for a given input 

 Prediction is different from classification 

 Classification refers to predict categorical class label 

 Prediction models continuous-valued functions 

 Major method for prediction: regression 

 model the relationship between one or more independent or 
predictor variables and a dependent or response variable 

 Regression analysis 

 Linear and multiple regression 

 Non-linear regression 

 Other regression methods: generalized linear model, Poisson 
regression, log-linear models, regression trees 



Linear Regression  

 Linear regression: involves a response variable y and a single 

predictor variable x 

y = w0 + w1 x 

where w0 (y-intercept) and w1 (slope) are regression coefficients   

 Method of least squares: estimates the best-fitting straight line 

 

 

 

 Multiple linear regression: involves more than one predictor variable 

 Training data is of the form (X1, y1), (X2, y2),…, (X|D|, y|D|)  

 Ex. For 2-D data, we may have: y = w0 + w1 x1+ w2 x2 

 Solvable by extension of least square method or using SAS, S-Plus 

 Many nonlinear functions can be transformed into the above 
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 Some nonlinear models can be modeled by a polynomial 
function 

 A polynomial regression model can be transformed into 
linear regression model.  For example, 

y = w0 + w1 x + w2 x
2 + w3 x

3 

convertible to linear with new variables: x2 = x2, x3= x3 

y = w0 + w1 x + w2 x2 + w3 x3  

 Other functions, such as power function, can also be 
transformed to linear model 

 Some models are intractable nonlinear (e.g., sum of 
exponential terms) 

 possible to obtain least square estimates through 
extensive calculation on more complex formulae 

Nonlinear Regression  



 Generalized linear model:  

 Foundation on which linear regression can be applied to modeling 

categorical response variables 

 Variance of y is a function of the mean value of y, not a constant 

 Logistic regression: models the prob. of some event occurring as a 

linear function of a set of predictor variables 

 Poisson regression: models the data that exhibit a Poisson 

distribution 

 Log-linear models: (for categorical data) 

 Approximate discrete multidimensional prob. distributions  

 Also useful for data compression and smoothing 

 Regression trees and model trees 

 Trees to predict continuous values rather than class labels 

Other Regression-Based Models 



Regression Trees and Model Trees 

 Regression tree: proposed in CART system  

 CART: Classification And Regression Trees 

 Each leaf stores a continuous-valued prediction 

 It is the average value of the predicted attribute for the training 

tuples that reach the leaf 

 Model tree: proposed by Quinlan (1992) 

 Each leaf holds a regression model—a multivariate linear equation 

for the predicted attribute 

 A more general case than regression tree 

 Regression and model trees tend to be more accurate than linear 

regression when the data are not represented well by a simple linear 

model 



 Predictive modeling: Predict data values or construct   
generalized linear models based on the database data 

 One can only predict value ranges or category distributions 

 Method outline: 

  Minimal generalization 

  Attribute relevance analysis 

  Generalized linear model construction 

  Prediction 

 Determine the major factors which influence the prediction 

 Data relevance analysis: uncertainty measurement, 
entropy analysis, expert judgement, etc. 

 Multi-level prediction: drill-down and roll-up analysis 

Predictive Modeling in Multidimensional Databases 



Prediction: Numerical Data 



Prediction: Categorical Data 



Classifier Accuracy Measures 

 Accuracy of a classifier M, acc(M): percentage of test set tuples that are 
correctly classified by the model M 

 Error rate (misclassification rate) of M = 1 – acc(M) 

 Given m classes, CMi,j, an entry in a confusion matrix, indicates # 
of tuples in class i  that are labeled by the classifier as class j 

 Alternative accuracy measures (e.g., for cancer diagnosis) 

sensitivity = t-pos/pos             /* true positive recognition rate */ 

specificity = t-neg/neg             /* true negative recognition rate */ 

precision =  t-pos/(t-pos + f-pos) 

accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg)  

 This model can also be used for cost-benefit analysis 

classes buy_computer = yes buy_computer = no total recognition(%) 

buy_computer = yes 6954 46 7000 99.34 

buy_computer = no 412 2588 3000 86.27 

total 7366 2634 10000 95.52 

C1 C2 

C1 True positive False negative 

C2 False positive True negative 



Predictor Error Measures 

 Measure predictor accuracy: measure how far off the predicted value is 

from the actual known value 

 Loss function: measures the error betw. yi and the predicted value yi’ 
 Absolute error: | yi – yi’|  
 Squared error:  (yi – yi’)2  

 Test error (generalization error): the average loss over the test set 

 Mean absolute error:                  Mean squared error: 

 

 Relative absolute error:               Relative squared error: 

 

The mean squared-error exaggerates the presence of outliers 

Popularly use (square) root mean-square error, similarly, root relative 

squared error 
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Evaluating the Accuracy of a Classifier or 
Predictor (I) 

 Holdout method 

 Given data is randomly partitioned into two independent sets 

 Training set (e.g., 2/3) for model construction 

 Test set (e.g., 1/3) for accuracy estimation 

 Random sampling: a variation of holdout 

 Repeat holdout k times, accuracy = avg. of the accuracies 
obtained 

 Cross-validation (k-fold, where k = 10 is most popular) 

 Randomly partition the data into k mutually exclusive subsets, 
each approximately equal size 

 At i-th iteration, use Di as test set and others as training set 

 Leave-one-out: k folds where k = # of tuples, for small sized data 

 Stratified cross-validation: folds are stratified so that class dist. in 
each fold is approx. the same as that in the initial data 



Evaluating the Accuracy of a Classifier or 
Predictor (II) 

 Bootstrap 

 Works well with small data sets 

 Samples the given training tuples uniformly with replacement 

 i.e., each time a tuple is selected, it is equally likely to be 

selected again and re-added to the training set 

 Several boostrap methods, and a common one is .632 boostrap 

 Suppose we are given a data set of d tuples.  The data set is sampled d 

times, with replacement, resulting in a training set of d samples.  The data 

tuples that did not make it into the training set end up forming the test set.  

About 63.2% of the original data will end up in the bootstrap, and the 

remaining 36.8% will form the test set (since (1 – 1/d)d ≈ e-1 = 0.368) 

 Repeat the sampling procedue k times, overall accuracy of the 

model: 
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Ensemble Methods: Increasing the Accuracy 

 Ensemble methods 

 Use a combination of models to increase accuracy 

 Combine a series of k learned models, M1, M2, …, Mk, 
with the aim of creating an improved model M* 

 Popular ensemble methods 

 Bagging: averaging the prediction over a collection of 
classifiers 

 Boosting: weighted vote with a collection of classifiers 

 Ensemble: combining a set of heterogeneous classifiers 



Bagging: Boostrap Aggregation 

 Analogy: Diagnosis based on multiple doctors’ majority vote 

 Training 

 Given a set D of d tuples, at each iteration i, a training set Di of d 
tuples is sampled with replacement from D (i.e., boostrap) 

 A classifier model Mi is learned for each training set Di 

 Classification: classify an unknown sample X  

 Each classifier Mi returns its class prediction 

 The bagged classifier M* counts the votes and assigns the class 
with the most votes to X 

 Prediction: can be applied to the prediction of continuous values by 
taking the average value of each prediction for a given test tuple 

 Accuracy 

 Often significant better than a single classifier derived from D 

 For noise data: not considerably worse, more robust  

 Proved improved accuracy in prediction 



Boosting 

 Analogy: Consult several doctors, based on a combination of weighted 

diagnoses—weight assigned based on the previous diagnosis accuracy 

 How boosting works? 

 Weights are assigned to each training tuple 

 A series of k classifiers is iteratively learned 

 After a classifier Mi is learned, the weights are updated to allow the 

subsequent classifier, Mi+1, to pay more attention to the training 

tuples that were misclassified by Mi 

 The final M* combines the votes of each individual classifier, where 

the weight of each classifier's vote is a function of its accuracy 

 The boosting algorithm can be extended for the prediction of 

continuous values 

 Comparing with bagging: boosting tends to achieve greater accuracy, 

but it also risks overfitting the model to misclassified data 



Adaboost (Freund and Schapire, 1997) 

 Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd) 

 Initially, all the weights of tuples are set the same (1/d) 

 Generate k classifiers in k rounds.  At round i, 

 Tuples from D are sampled (with replacement) to form a 
training set Di of the same size 

 Each tuple’s chance of being selected is based on its weight 
 A classification model Mi is derived from Di 

 Its error rate is calculated using Di as a test set 

 If a tuple is misclssified, its weight is increased, o.w. it is 
decreased 

 Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier 
Mi error rate is the sum of the weights of the misclassified tuples:  
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Model Selection: ROC Curves 

 ROC (Receiver Operating Characteristics) 

curves: for visual comparison of 

classification models 

 Originated from signal detection theory 

 Shows the trade-off between the true 

positive rate and the false positive rate 

 The area under the ROC curve is a 

measure of the accuracy of the model 

 Rank the test tuples in decreasing order: 

the one that is most likely to belong to the 

positive class appears at the top of the list 

 The closer to the diagonal line (i.e., the 

closer the area is to 0.5), the less accurate 

is the model 

 

 Vertical axis represents 
the true positive rate 

 Horizontal axis rep. the 
false positive rate 

 The plot also shows a 
diagonal line 

 A model with perfect 
accuracy will have an 
area of 1.0 
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Patterns and Models 
 Pattern 

 Model 

 Visualizing a pattern 

 Database 

 Record 

 Field 

 Predictor 

 Prediction 

 value 

 



Where are models used? 
 Selection 

 Acquisition 

 Retention 

 Ext ension 

 

 



Right Model 
 It could always be used to make the correct prediction 

 It would not degrade over time 

 It could be used with the data at hand not require any 
extraordinary data collection 

 It would be simpler and smaller than the data it was 
used to model. 



Sampling 
 It is a statistical analysis technique used to select, 

manipulate and analyze a representative subset of data 
points to identify patterns and trends in the larger data 
set being examined. 

 Random sampling 

 Experimental design 

 Round robin 

 Stratified 

 Cluster 

 * Avoiding bias 



Data Mining 
 Data mining is the process of finding anomalies, 

patterns and correlations within large data sets to 
predict outcomes. Using a broad range of techniques, 
you can use this information to increase revenues, cut 
costs, improve customer relationships, reduce risks 
and more. 



Applications 
-Data mining is highly useful in the following domains  

 Market Analysis and Management 

 Corporate Analysis & Risk Management 

 Fraud Detection 

 



KDD 



 Data Cleaning − In this step, the noise and inconsistent data is 
removed. 

 Data Integration − In this step, multiple data sources are 
combined. 

 Data Selection − In this step, data relevant to the analysis task 
are retrieved from the database. 

 Data Transformation − In this step, data is transformed or 
consolidated into forms appropriate for mining by performing 
summary or aggregation operations. 

 Data Mining − In this step, intelligent methods are applied in 
order to extract data patterns. 

 Pattern Evaluation − In this step, data patterns are evaluated. 
 Knowledge Presentation − In this step, knowledge is 

represented. 
 



 There are two forms of data analysis that can be used 
for extracting models describing important classes or 
to predict future data trends. These two forms are as 
follows − 

 Classification 

 Prediction 

 Classification models predict categorical class labels; 
and prediction models predict continuous valued 
functions.  

 







Decision Tree 

 
 A decision tree is a structure that includes a root node, 

branches, and leaf nodes. Each internal node denotes 
a test on an attribute, each branch denotes the 
outcome of a test, and each leaf node holds a class 
label. The topmost node in the tree is the root node. 





 Algorithm : Generate_decision_tree  
 Input: Data partition, D, which is a set of training tuples and their associated class labels. 
  attribute_list, the set of candidate attributes.  
 Attribute selection method, a procedure to determine the splitting criterion that best 

partitions that the data tuples into individual classes. This criterion includes a 
splitting_attribute and either a splitting point or splitting subset. 

  Output: A Decision Tree 
  Method create a node N;  
 if tuples in D are all of the same class, C then return N as leaf node labeled with class C;  
 if attribute_list is empty then return N as leaf node with labeled with majority class in D;  

// majority voting  
 apply attribute_selection_method(D, attribute_list) to find the best splitting_criterion;  
 label node N with splitting_criterion; 
  if splitting_attribute is discrete-valued and multiway splits allowed then // not restricted 

to binary trees 
  attribute_list -= splitting attribute; // remove splitting attribute for each outcome j of 

splitting criterion // partition the tuples and grow subtrees for each partition 
  let Dj be the set of data tuples in D satisfying outcome j; // a partition  
 if Dj is empty then 
  attach a leaf labeled with the majority class in D to node N;  
 else attach the node returned by Generate decision tree(Dj, attribute list) to node N;  
 end for  
 return N; 



Attribute selection measures 
 Information gain 

 Gain ratio 

 Gini index 



 

 
 

 


